Advertisement

Biogeochemistry

, Volume 123, Issue 1–2, pp 237–250 | Cite as

Molecular and geochemical constraints on anaerobic ammonium oxidation (anammox) in a riparian zone of the Seine Estuary (France)

  • Sebastian Naeher
  • Arnaud HuguetEmail author
  • Céline L. Roose-Amsaleg
  • Anniet M. Laverman
  • Céline Fosse
  • Moritz F. Lehmann
  • Sylvie Derenne
  • Jakob Zopfi
Article

Abstract

To expand the limited knowledge about the ecological significance of anaerobic ammonium oxidation (anammox) in continental aquatic and terrestrial ecosystems, we studied community structure, abundance, and activity of anammox bacteria in soils and sediments in the wetland of Trou Deshayes, a riparian zone in the Seine Estuary, France. Combining (i) molecular analyses of the genes coding for anammox bacterial 16S rRNA and the enzyme hydrazine oxidoreductase (hzo), (ii) quantification of unique anammox bacterial membrane lipids (i.e. ladderanes), and, (iii) 15N-isotope label incubation experiments with intertidal sediments and irregularly flooded soils nearby, we demonstrated that anammox bacteria were ubiquitous in the studied wetland ecosystem. In both soils and sediments, detected anammox bacteria were related to Candidatus ‘Brocadia’. 16S rRNA genes were generally lower in the more oxygenated soils, but on the same order of magnitude (107–108 copies g−1 d.w.) as found for other river estuaries, riparian zones and agricultural soils. While the C20-ladderane fatty acid with five cyclobutane moieties (C20-[5]-FA) was found in both sediments and soils, other ladderane species were detected only in the wetland sediments. The observed differential ladderane distribution suggests intra-genus differences in the community composition of anammox bacteria between the sediments and the floodplain soils. While the abundance of anammox bacteria was significantly lower in the soils versus the sediments, the potential anammox rates were similar (≤15 and ≤22 nmol N2 d−1 g−1 w.w. sediment and soil, respectively), suggesting lower cell-specific anammox rates in the sediments. The observed potential rates of anammox were rather low, leaving canonical denitrification as the main fixed N removal pathway in this riparian zone. The relative contribution of anammox to the total N2 production (between 3 and 8 %) was similar at all sites, highlighting the dependence of the anammox process on nitrite supply from denitrification across environmental boundaries. Due to this coupling, the dependence of organotrophic denitrification on the quality and stoichiometry of OM also seems to affect the anammox bacterial community. Our results suggest that N removal and mitigation of N supply from agriculture in wetlands by anammox is limited, and much less important than denitrification.

Keywords

Anammox Denitrification Ladderane 15N labelling 16S rRNA and hzo genes Riparian zone 

Notes

Acknowledgments

We thank Mark Rollog (University of Basel) for the stable isotope measurements and Veronique Vaury and Christelle Anquetil (UPMC, Paris) for their help with TOC, TN and ladderane analyses, respectively. Lucas Gandy and Enora Saunier (UPMC, Paris) helped with the microbiological analyses. We thank Paques Balk, The Netherlands, for providing anammox samples. JZ gratefully acknowledges a visiting professorship from the UPMC in 2012, allowing the initiation of the project. The authors acknowledge funding from the Emergence-UPMC-2011 research program and are grateful for additional financial support from the French-Swiss PHC Campus France/SATW Germaine de Staël program (to AH and JZ).

Supplementary material

10533_2014_66_MOESM1_ESM.pdf (448 kb)
Supplementary material 1 (PDF 447 kb)

References

  1. Babbin AR, Ward BB (2013) Controls on nitrogen loss processes in Chesapeake Bay sediments. Environ Sci Technol 47:4189–4196. doi: 10.1021/es304842r CrossRefGoogle Scholar
  2. Babbin AR, Keil RG, Devol AH, Ward BB (2014) Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science 344:406–408. doi: 10.1126/science.1248364 CrossRefGoogle Scholar
  3. Billen G, Garnier J, Mouchel J-M, Silvestre M (2007a) The Seine system: introduction to a multidisciplinary approach of the functioning of a regional river system. Sci Total Environ 375:1–12. doi: 10.1016/j.scitotenv.2006.12.001 CrossRefGoogle Scholar
  4. Billen G, Garnier J, Némery J et al (2007b) A long-term view of nutrient transfers through the Seine river continuum. Sci Total Environ 375:80–97. doi: 10.1016/j.scitotenv.2006.12.005 CrossRefGoogle Scholar
  5. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568. doi: 10.2307/2641247 CrossRefGoogle Scholar
  6. Crowe SA, Canfield DE, Mucci A, Sundby B, Maranger R (2012) Anammox, denitrification and fixed-nitrogen removal in sediments from the Lower St. Lawrence Estuary. Biogeosciences 9:4309–4321. doi: 10.5194/bg-9-4309-2012 CrossRefGoogle Scholar
  7. Dale OR, Tobias CR, Song B (2009) Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environ Microbiol 11:1194–1207. doi: 10.1111/j.1462-2920.2008.01850.x CrossRefGoogle Scholar
  8. Dalsgaard T, Thamdrup B (2002) Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl Environ Microbiol 68:3802–3808. doi: 10.1128/aem.68.8.3802-3808.2002 CrossRefGoogle Scholar
  9. Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156:457–464. doi: 10.1016/j.resmic.2005.01.011 CrossRefGoogle Scholar
  10. Dalsgaard T, Thamdrup B, Farias L, Revsbech NP (2012) Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol Oceanogr 57:1331–1346. doi: 10.4319/lo.2012.57.5.1331 CrossRefGoogle Scholar
  11. Erler DV, Eyre BD, Davison L (2008) The contribution of anammox and denitrification to sediment N2 production in a surface flow constructed wetland. Environ Sci Technol 42:9144–9150. doi: 10.1021/es801175t CrossRefGoogle Scholar
  12. Garnier J, Billen G (2007) Production vs. respiration in river systems: an indicator of an “ecological status”. Sci Total Environ 375:110–124. doi: 10.1016/j.scitotenv.2006.12.006 CrossRefGoogle Scholar
  13. Groffman P (2012) Terrestrial denitrification: challenges and opportunities. Ecolog Proces 1:11. doi: 10.1186/2192-1709-1-11 CrossRefGoogle Scholar
  14. Han P, Huang Y-T, Lin J-G, Gu J-D (2013) A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples. Appl Microbiol Biotechnol 97:10521–10529. doi: 10.1007/s00253-013-5305-z CrossRefGoogle Scholar
  15. Hirsch MD, Long ZT, Song B (2011) Anammox bacterial diversity in various aquatic ecosystems based on the detection of hydrazine oxidase genes (hzoA/hzoB). Microb Ecol 61:264–276. doi: 10.1007/s00248-010-9743-1 CrossRefGoogle Scholar
  16. Hopmans EC, Kienhuis MVM, Rattray JE, Jaeschke A, Schouten S, Sinninghe Damsté JS (2006) Improved analysis of ladderane lipids in biomass and sediments using high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 20:2099–2103. doi: 10.1002/rcm.2572 CrossRefGoogle Scholar
  17. Hou L, Zheng Y, Liu M, Gong J, Zhang X, Yin G, You L (2013) Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. J Geophys Res: Biogeosci 118:1237–1246. doi: 10.1002/jgrg.20108 Google Scholar
  18. Hu B-l , Rush D, van der Biezen E et al (2011a) New anaerobic, ammonium-oxidizing community enriched from peat soil. Appl Environ Microbiol 77:966–971. doi: 10.1128/aem.02402-10 CrossRefGoogle Scholar
  19. Hu B-l, Shen LD, Xu XY, Zheng P (2011b) Anaerobic ammonium oxidation (anammox) in different natural ecosystems. Biochem Soc Trans 39:1811–1816. doi: 10.1042/BST20110711 CrossRefGoogle Scholar
  20. Humbert S (2011) Discovery of anammox bacteria in terrestrial ecosystems. Dissertation, University of Neuchâtel, SwitzerlandGoogle Scholar
  21. Humbert S, Tarnawski S, Fromin N, Mallet M-P, Aragno M, Zopfi J (2009) Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J 4:450–454. doi: 10.1038/ismej.2009.125 CrossRefGoogle Scholar
  22. Humbert S, Zopfi J, Tarnawski S-E (2012) Abundance of anammox bacteria in different wetland soils. Environ Microbiol Rep 4:484–490. doi: 10.1111/j.1758-2229.2012.00347.x CrossRefGoogle Scholar
  23. Jaeschke A, Lewan MD, Hopmans EC, Schouten S, Sinninghe Damsté JS (2008) Thermal stability of ladderane lipids as determined by hydrous pyrolysis. Org Geochem 39:1735–1741. doi: 10.1016/j.orggeochem.2008.08.006 CrossRefGoogle Scholar
  24. Jaeschke A, Rooks C, Trimmer M, Nicholls JC, Hopmans EC, Schouten S, Sinninghe Damsté JS (2009) Comparison of ladderane phospholipid and core lipids as indicators for anaerobic ammonium oxidation (anammox) in marine sediments. Geochim Cosmochim Acta 73:2077–2088. doi: 10.1016/j.gca.2009.01.013 CrossRefGoogle Scholar
  25. Jaeschke A, Abbas B, Zabel M, Hopmans EC, Schouten S, Sinninghe Damsté JS (2010) Molecular evidence for anaerobic ammonium-oxidizing (anammox) bacteria in continental shelf and slope sediments off northwest Africa. Limnol Oceanogr 55:365–376. doi: 10.4319/lo.2010.55.1.0365 CrossRefGoogle Scholar
  26. Kalvelage T, Lavik G, Lam P et al (2013) Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat Geosci 6:228–234. doi: 10.1038/ngeo1739 CrossRefGoogle Scholar
  27. Kartal B, Kuypers MMM, Lavik G, Schalk J, Op den Camp HJM, Jetten MSM, Strous M (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9:635–642. doi: 10.1111/j.1462-2920.2006.01183.x CrossRefGoogle Scholar
  28. Kartal B, van Niftrik L, Rattray J et al (2008) Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63:46–55. doi: 10.1111/j.1574-6941.2007.00408.x CrossRefGoogle Scholar
  29. Kuypers MMM, Sliekers AO, Lavik G et al (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611. doi: 10.1038/nature01472 CrossRefGoogle Scholar
  30. Langlois E, Bureau F (2012) Restauration écologique des berges de la Basse Vallée de Seine: REBEBAS. Scientific Report Seine Aval 4Google Scholar
  31. Laverman A, Derenne S (2012) Rôle epurateur pour le restauration ecologique de l’estuaire de la Seine. Scientific Report Seine Aval RE2 projectGoogle Scholar
  32. Le Hir P, Lafite R (2012) Projet MODEL: Modélisation validée de l’hydro-morpho-sédimentologie, base physique d’une modélisation environnementale de l’estuaire de la Seine. Scientific Report Seine Aval 4 projectGoogle Scholar
  33. Li M, Gu J-D (2011) Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria. Appl Microbiol Biotechnol 90:1241–1252. doi: 10.1007/s00253-011-3230-6 CrossRefGoogle Scholar
  34. Li M, Cao H, Hong Y, Gu J-D (2013) Using the variation of anammox bacteria community structures as a bio-indicator for anthropogenic/terrestrial nitrogen inputs in the Pearl River Delta (PRD). Appl Microbiol Biotechnol: 1–9. doi: 10.1007/s00253-013-4990-y
  35. Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol Ecol 9:357–361. doi: 10.1111/j.1574-6941.1992.tb01771.x CrossRefGoogle Scholar
  36. Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiology 157:1706–1713. doi: 10.1099/mic.0.048595-0 CrossRefGoogle Scholar
  37. Rattray JE, van de Vossenberg J, Hopmans EC et al (2008) Ladderane lipid distribution in four genera of anammox bacteria. Arch Microbiol 190:51–66. doi: 10.1007/s00203-008-0364-8 CrossRefGoogle Scholar
  38. Rattray JE, van de Vossenberg J, Jaeschke A et al (2010) Impact of temperature on ladderane lipid distribution in anammox bacteria. Appl Environ Microbiol 76:1596–1603. doi: 10.1128/aem.01796-09 CrossRefGoogle Scholar
  39. Rush D, Jaeschke A, Hopmans EC, Geenevasen JAJ, Schouten S, Sinninghe Damsté JS (2011) Short chain ladderanes: oxic biodegradation products of anammox lipids. Geochim Cosmochim Acta 75:1662–1671. doi: 10.1016/j.gca.2011.01.013 CrossRefGoogle Scholar
  40. Rush D, Hopmans EC, Wakeham SG, Schouten S, Sinninghe Damsté JS (2012a) Occurrence and distribution of ladderane oxidation products in different oceanic regimes. Biogeosciences 9:2407–2418. doi: 10.5194/bg-9-2407-2012 CrossRefGoogle Scholar
  41. Rush D, Wakeham SG, Hopmans EC, Schouten S, Sinninghe Damsté JS (2012b) Biomarker evidence for anammox in the oxygen minimum zone of the Eastern Tropical North Pacific. Org Geochem 53:80–87. doi: 10.1016/j.orggeochem.2012.02.005 CrossRefGoogle Scholar
  42. Rysgaard S, Glud RN, Risgaard-Petersen N, Dalsgaard T (2004) Denitrification and anammox activity in Arctic marine sediments. Limnol Oceanogr 49:1493–1502. doi: 10.4319/lo.2004.49.5.1493 CrossRefGoogle Scholar
  43. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  44. Seitzinger S, Harrison JA, Böhlke JK et al (2006) Denitrification accross landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090. doi: 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2
  45. Shen L-D, Liu S, Lou L-P, Liu W-P, Xu X-Y, Zheng P, Hu B-l (2013) Broad distribution of diverse anaerobic ammonium-oxidising bacteria in Chinese agricultural soils. Appl Environ Microbiol 79:6167–6172. doi: 10.1128/aem.00884-13 CrossRefGoogle Scholar
  46. Sinninghe Damsté JS, Strous M, Rijpstra WIC et al. (2002) Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419:708–712. doi: http://www.nature.com/nature/journal/v419/n6908/suppinfo/nature01128_S1.html
  47. Sinninghe Damsté JS, Rijpstra WIC, Geenevasen JAJ, Strous M, Jetten MSM (2005) Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J 272:4270–4283. doi: 10.1111/j.1742-4658.2005.04842.x CrossRefGoogle Scholar
  48. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine and terrestrial ecosystems. Environ Pollut 100:179–196. doi: 10.1016/s0269-7491(99)00091-3 CrossRefGoogle Scholar
  49. Song GD, Liu SM, Marchant H, Kuypers MMM, Lavik G (2013) Anammox, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment. Biogeosciences 10:6851–6864. doi: 10.5194/bg-10-6851-2013 CrossRefGoogle Scholar
  50. Sonthiphand P, Hall MW, Neufeld JD (2014) Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front Microbiol 5:399. doi: 10.3389/fmicb.2014.00399 CrossRefGoogle Scholar
  51. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefGoogle Scholar
  52. Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318. doi: 10.1128/aem.68.3.1312-1318.2002 CrossRefGoogle Scholar
  53. Thamdrup B, Dalsgaard T, Jensen MM, Ulloa O, Farias L, Escribano R (2006) Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol Oceanogr 51:2145–2156. doi: 10.4319/lo.2006.51.5.2145 CrossRefGoogle Scholar
  54. Thieu V, Billen G, Garnier J (2009) Nutrient transfer in three contrasting NW European watersheds: the Seine, Somme, and Scheldt Rivers. A comparative application of the Seneque/Riverstrahler model. Water Res 43:1740–1754. doi: 10.1016/j.watres.2009.01.014 CrossRefGoogle Scholar
  55. Trimmer M, Engström P (2011) Distribution, activity, and ecology of anammox bacteria in aquatic environments. In: Ward BB, Arp DJ, Klotz MG (eds) Nitrification. American Society for Microbiology, Washington, pp 201–236CrossRefGoogle Scholar
  56. Trimmer M, Nicholls JC, Morley N, Davies CA, Aldridge J (2005) Biphasic behavior of anammox regulated by nitrite and nitrate in an estuarine sediment. Appl Environ Microbiol 71:1923–1930. doi: 10.1128/aem.71.4.1923-1930.2005 CrossRefGoogle Scholar
  57. Trimmer M, Risgaard-Petersen N, Nicholls JC, Engström P (2006) Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores. Mar Ecol Prog Ser 326:37–47. doi: 10.3354/meps326037 CrossRefGoogle Scholar
  58. Wang S, Zhu G, Peng Y, Jetten MSM, Yin C (2012) Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River Estuary. Environ Sci Technol 46:8834–8842. doi: 10.1021/es3017446 CrossRefGoogle Scholar
  59. Ward BB (2013) How nitrogen is lost. Science 341:352–353. doi: 10.1126/science.1240314 CrossRefGoogle Scholar
  60. Zhao Z, Cao Y, Li L, Song G, Yang H, Liu S, Zhao M (2013) Sedimentary ladderane core lipids as potential indicators of hypoxia in the East China Sea. Chin J Oceanol Limnol 31:237–244. doi: 10.1007/s00343-013-1308-y CrossRefGoogle Scholar
  61. Zhu G, Wang S, Wang Y, Wang C, Risgaard-Petersen N, Jetten MSM, Yin C (2011) Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J 5:1905–1912. doi: 10.1038/ismej.2011.63 CrossRefGoogle Scholar
  62. Zhu G, Wang S, Wang W et al (2013) Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nat Geosci 6:103–107. doi: 10.1038/ngeo1683 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sebastian Naeher
    • 1
    • 5
  • Arnaud Huguet
    • 1
    • 2
    Email author
  • Céline L. Roose-Amsaleg
    • 1
    • 2
  • Anniet M. Laverman
    • 1
    • 2
    • 6
  • Céline Fosse
    • 3
  • Moritz F. Lehmann
    • 4
  • Sylvie Derenne
    • 1
    • 2
  • Jakob Zopfi
    • 4
  1. 1.Sorbonne UniversitésParisFrance
  2. 2.CNRSParisFrance
  3. 3.PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie ParisParisFrance
  4. 4.Laboratory for Aquatic and Stable Isotope BiogeochemistryUniversity of BaselBaselSwitzerland
  5. 5.Department of Chemistry, WA-Organic and Isotope Geochemistry Centre (WA-OIGC)Curtin UniversityPerthAustralia
  6. 6.Université de RennesRennesFrance

Personalised recommendations