Advertisement

Biogeochemistry

, Volume 122, Issue 2–3, pp 165–174 | Cite as

Climate history shapes contemporary leaf litter decomposition

  • Michael S. StricklandEmail author
  • Ashley D. Keiser
  • Mark A. Bradford
Biogeochemistry Letters

Abstract

Litter decomposition is mediated by multiple variables, of which climate is expected to be a dominant factor at global scales. However, like other organisms, traits of decomposers and their communities are shaped not just by the contemporary climate but also their climate history. Whether or not this affects decomposition rates is underexplored. Here we source decomposer communities from three forest sites contrasting in climate (tropical, temperate, boreal), and, using experimental microcosms, quantify decomposition of a common litter under a factorial combination of four temperature (15, 20, 25, and 30 °C) and five moisture regimes (35, 55, 70, 85, and 100 % water holding capacity). We find that the climate history of the decomposer community is an important determinant of litter decomposition, explaining the same amount of variance in decomposition as both temperature and moisture. Further, climate history also shapes the effect of contemporary climate (i.e. experimental) on decomposition, both in terms of the magnitude of decomposition under optimal conditions and the range of abiotic conditions at which high decomposition rates are maintained. For example, at optimal conditions (i.e. 25 °C/70 % WHC) the tropical site has a greater decomposition rate than the other two sites. However, the temperate and boreal sites have greater ‘niche breadth’, where decomposition rates are more sustained (i.e. decrease less) as temperature and moisture deviate further from the optimum. Our data suggest that climate history shapes the functional response of the soil decomposer community, as it does for animals and plants. Yet how this shaping affects decomposition rates across regional and global climate gradients, and how such relationships are applied to temporal predictions, remain unanswered questions.

Keywords

Carbon mineralization Climate Forests Litter decomposition Niche breadth Niche optima 

Notes

Acknowledgments

We thank Catherine Fontana for lab assistance and staff at the Luquillo, Coweeta, and Bonanza Creek LTERs for supplying soils. The work was funded by a grant (DEB-1021098) from the National Science Foundation to MAB. We also thank two anonymous reviewers for their constructive comments.

Supplementary material

10533_2014_65_MOESM1_ESM.docx (53 kb)
Supplementary material 1 (DOCX 53 kb)

References

  1. Adair EC et al (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Chang Biol 14:2636–2660. doi: 10.1111/j.1365-2486.2008.01674.x Google Scholar
  2. Ayres E, Steltzer H, Berg S, Wall DH (2009a) Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J Ecol 97:901–912. doi: 10.1111/j.1365-2745.2009.01539.x CrossRefGoogle Scholar
  3. Ayres E et al (2009b) Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem 41:606–610. doi: 10.1016/j.soilbio.2008.12.022 CrossRefGoogle Scholar
  4. Barcenas-Moreno G, Gomez-Brandon M, Rousk J, Baath E (2009) Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol 15:2950–2957. doi: 10.1111/j.1365-2486.2009.01882.x CrossRefGoogle Scholar
  5. Berg B et al (1993) Litter mass-loss rates in pine forests of europe and eastern united-states—some relationships with climate and litter quality. Biogeochemistry 20:127–159. doi: 10.1007/bf00000785 CrossRefGoogle Scholar
  6. Bond WJ (1989) The tortoise and the hare—ecology of angiosperm dominance and gymnosperm persistence. Biol J Linn Soc 36:227–249. doi: 10.1111/j.1095-8312.1989.tb00492.x CrossRefGoogle Scholar
  7. Bradford MA (2013) Thermal adaptation of decomposer communities in warming soils. Front Microbiol. doi: 10.3389/fmicb.2013.00333 Google Scholar
  8. Bradford MA, Crowther TW (2013) Carbon use efficiency and storage in terrestrial ecosystems. New Phytol 199:7–9. doi: 10.1111/nph.12334 CrossRefGoogle Scholar
  9. Bradford MA, Fierer N (2012) The biogeography of microbial communities and ecosystem processes: implications for soil and ecosystem models. In: Wall DH (ed) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 189–198CrossRefGoogle Scholar
  10. Bradford MA et al (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327. doi: 10.1111/j.1461-0248.2008.01251.x CrossRefGoogle Scholar
  11. Bradford MA et al. (2014) Climate fails to predict wood decomposition at regional scales. Nature Clim Change 4:625–630 doi: 10.1038/nclimate2251 http://www.nature.com/nclimate/journal/v4/n7/abs/nclimate2251.html#supplementary-information
  12. Carrillo Y, Ball BA, Strickland MS, Bradford MA (2012) Legacies of plant litter on carbon and nitrogen dynamics and the role of the soil community. Pedobiologia 55:185–192. doi: 10.1016/j.pedobi.2012.02.002 CrossRefGoogle Scholar
  13. Cleveland CC, Reed SC, Keller AB, Nemergut DR, O’Neill SP, Ostertag R, Vitousek PM (2014) Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–294. doi: 10.1007/s00442-013-2758-9 CrossRefGoogle Scholar
  14. Cornwell WK et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi: 10.1111/j.1461-0248.2008.01219.x CrossRefGoogle Scholar
  15. Currie WS, Harmon ME, Burke IC, Hart SC, Parton WJ, Silver W (2010) Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale. Glob Chang Biol 16:1744–1761. doi: 10.1111/j.1365-2486.2009.02086.x CrossRefGoogle Scholar
  16. Evans SE, Wallenstein MD (2012) Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109:101–116. doi: 10.1007/s10533-011-9638-3 CrossRefGoogle Scholar
  17. Evans SE, Wallenstein MD (2014) Climate change alters ecological strategies of soil bacteria. Ecol Lett 17:155–164. doi: 10.1111/ele.12206 CrossRefGoogle Scholar
  18. Evans SE, Wallenstein MD, Burke IC (2014) Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought? Ecology 95:110–122. doi: 10.1890/13-0500.1 CrossRefGoogle Scholar
  19. Fierer N, Allen AS, Schimel JP, Holden PA (2003) Controls on microbial co2 production: a comparison of surface and subsurface soil horizons. Glob Chang Biol 9:1322–1332. doi: 10.1046/j.1365-2486.2003.00663.x CrossRefGoogle Scholar
  20. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017. doi: 10.1038/ismej.2011.159 CrossRefGoogle Scholar
  21. Garcia-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett 16:1045–1053. doi: 10.1111/ele.12137 CrossRefGoogle Scholar
  22. Gee G, Or D (2002) Particle-size analysis. In: Dane J, Topp G (eds) Methods of soil analysis, part 4. Soil Science Society of America Inc, Madison, pp 255–293Google Scholar
  23. Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765. doi: 10.1046/j.1365-2486.2000.00349.x CrossRefGoogle Scholar
  24. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194. doi: 10.2307/2460262 CrossRefGoogle Scholar
  25. Hall EK, Neuhauser C, Cotner JB (2008) Toward a mechanistic understanding of how natural bacterial communities respond to changes in temperature in aquatic ecosystems. ISME J 2:471–481. doi: 10.1038/ismej.2008.9 CrossRefGoogle Scholar
  26. Hattenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci USA 102:1519–1524. doi: 10.1073/pnas.0404977102 CrossRefGoogle Scholar
  27. Hurlbert SH, Lombardi CM (2009) Final collapse of the neyman-pearson decision theoretic framework and rise of the neofisherian. Ann Zool Fenn 46:311–349CrossRefGoogle Scholar
  28. Ilstedt U, Nordgren A, Malmer A (2000) Optimum soil water for soil respiration before and after amendment with glucose in humid tropical acrisols and a boreal mor layer. Soil Biol Biochem 32:1591–1599. doi: 10.1016/s0038-0717(00)00073-0 CrossRefGoogle Scholar
  29. Keiser AD, Strickland MS, Fierer N, Bradford MA (2011) The effect of resource history on the functioning of soil microbial communities is maintained across time. Biogeosciences 8:1477–1486. doi: 10.5194/bg-8-1477-2011 CrossRefGoogle Scholar
  30. Keiser AD, Knoepp JD, Bradford MA (2013) Microbial communities may modify how litter quality affects potential decomposition rates as tree species migrate. Plant Soil 372:167–176. doi: 10.1007/s11104-013-1730-0 CrossRefGoogle Scholar
  31. Keiser AD, Keiser DA, Strickland MS, Bradford MA (2014) Disentangling the mechanisms underlying functional differences among decomposer communities. J Ecol 102:603–609. doi: 10.1111/1365-2745.12220 CrossRefGoogle Scholar
  32. Lauenroth WK, Sala OE (1992) Long-term forage production of north-american shortgrass steppe. Ecol Appl 2:397–403. doi: 10.2307/1941874 CrossRefGoogle Scholar
  33. Lavelle P et al (1993) A hierarchical model for decomposition in terrestrial ecosystems—application to soils of the humid tropics. Biotropica 25:130–150. doi: 10.2307/2389178 CrossRefGoogle Scholar
  34. Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93:1867–1879CrossRefGoogle Scholar
  35. Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938CrossRefGoogle Scholar
  36. Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472. doi: 10.2307/1936576 CrossRefGoogle Scholar
  37. Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85. doi: 10.1016/j.soilbio.2013.01.002 CrossRefGoogle Scholar
  38. Parton W et al (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364. doi: 10.1126/science.1134853 CrossRefGoogle Scholar
  39. Rinnan R, Rousk J, Yergeau E, Kowalchuk GA, Baath E (2009) Temperature adaptation of soil bacterial communities along an antarctic climate gradient: predicting responses to climate warming. Glob Chang Biol 15:2615–2625. doi: 10.1111/j.1365-2486.2009.01959.x CrossRefGoogle Scholar
  40. Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol. doi: 10.3389/fmicb.2012.00348 Google Scholar
  41. Schipper L, Hobbs J, Rutledge S, Arcus V (2014) Thermodynamic theory explains the temperature optima of soil microbial processes and high q10 values at low temperatures. Glob Chang Biol 20:3578–3586. doi: 10.1111/gcb.12596 CrossRefGoogle Scholar
  42. Sprugel DG (1989) The relationship of evergreenness, crown architecture, and leaf size. Am Nat 133:465–479. doi: 10.1086/284930 CrossRefGoogle Scholar
  43. Strickland MS, Lauber C, Fierer N, Bradford MA (2009a) Testing the functional significance of microbial community composition. Ecology 90:441–451. doi: 10.1890/08-0296.1 CrossRefGoogle Scholar
  44. Strickland MS, Osburn E, Lauber C, Fierer N, Bradford MA (2009b) Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct Ecol 23:627–636. doi: 10.1111/j.1365-2435.2008.01515.x CrossRefGoogle Scholar
  45. Strickland MS, Devore JL, Maerz JC, Bradford MA (2010) Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Glob Chang Biol 16:1338–1350. doi: 10.1111/j.1365-2486.2009.02042.x CrossRefGoogle Scholar
  46. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, BerkleyGoogle Scholar
  47. Wall DH et al (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Chang Biol 14:2661–2677. doi: 10.1111/j.1365-2486.2008.01672.x Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael S. Strickland
    • 1
    Email author
  • Ashley D. Keiser
    • 2
  • Mark A. Bradford
    • 3
  1. 1.Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesUSA
  3. 3.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA

Personalised recommendations