, Volume 123, Issue 1–2, pp 147–173 | Cite as

A carbon balance of Norway: terrestrial and aquatic carbon fluxes

  • Heleen A. de WitEmail author
  • Kari Austnes
  • Gro Hylen
  • Lise Dalsgaard


Northern landscapes accumulate carbon in vegetation and soils while rivers transport significant amounts of land-derived carbon to coastal areas. Here, we quantify carbon sources and sinks in main ecosystems (forests, peatlands, mountains, agricultural areas, lakes) in Norway for 1990–2008, and compare riverine carbon transport with terrestrial carbon accumulation in Norway’s four major discharge areas. Mean annual carbon accumulation (6.0 ± 0.9 Tg C; 19 g C m−2) in terrestrial ecosystems balanced 40 % of national greenhouse gas emissions. The area-normalized terrestrial sink strength declined in the following order (in g C m−2 year−1): tree biomass (40 ± 3) > peatlands (19 ± 15) > forest soils (9 ± 1) ≫ lakes (2 ± 1) > mountains (0.5 ± 0.3), while agricultural soils were sources of carbon (−36 ± 74). The most precise estimate in the carbon balance was for tree biomass, because of the underlying forest inventory data. Poor data on land management and soil type in agricultural soils, and on (former) drainage and peatland type resulted in high uncertainty in carbon loss and uptake estimates in agricultural soils and peatlands, which impacted the uncertainty in total terrestrial carbon accumulation. Also, carbon losses from disturbance in organic soil types were poorly constrained. Riverine coastal inputs of land-derived organic carbon (OC) were 1.0 ± 0.1 Tg C year−1 (3.0 g C m−2 year−1), with highest area-specific riverine export in western (4.5 g C m−2 year−1) and lowest (1.7 g C m−2 year−1) in subarctic Norway. In west and middle Norway, river OC export was approximately equal to carbon accumulation in soils and wetlands, while it was 50 % of soil and wetland carbon accumulation in southeast and subarctic Norway. Lateral aquatic transport of carbon is not explicitly accounted for in forest soil carbon accumulation estimates, although aquatic fluxes represent a climate-dependent carbon loss from soil carbon pools. The lack of methods that adequately account for lateral fluxes in carbon balances adds considerable uncertainty to soil carbon sink estimates. Climate warming and associated changes in precipitation may result in substantial alterations of terrestrial and aquatic carbon fluxes, with uncertain implications for the terrestrial carbon sink of northern landscapes.


Forest carbon sink Riverine carbon transport Boreal and subarctic ecosystems Peatland management Climate Uncertainty 



This work was funded by the Norwegian Research Council projects “Terrestrial C sequestration potential in Norway under present and future climate (TerraC)” (184681/S30), ECCO (224779/E10), and by NIVA’s Strategic Institute Initiative “Climate effects from mountains to fjords” (Research Council of Norway, Contract No. 208279). This work profited from the Top Level Research Initiative Collaborative Project financed by Nordforsk (Domqua, 60501). Two anonymous referees and the editor are gratefully acknowledged.

Supplementary material

10533_2014_60_MOESM1_ESM.docx (17 kb)
(DOCX 17 kb)


  1. Agren A, Buffam I, Jansson M, Laudon H (2007a) Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. J Geophys Res Biogeosci 112(G3):G03003. doi: 10.1029/2006jg000381 CrossRefGoogle Scholar
  2. Agren GI, Hyvonen R, Nilsson T (2007b) Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data. Biogeochemistry 82(3):217–227CrossRefGoogle Scholar
  3. Algesten G, Sobek S, Bergstrom AK, Agren A, Tranvik LJ, Jansson M (2004) Role of lakes for organic carbon cycling in the boreal zone. Glob Change Biol 10(1):141–147CrossRefGoogle Scholar
  4. Andren O, Katterer T, Karlsson T, Eriksson J (2008) Soil C balances in Swedish agricultural soils 1990–2004, with preliminary projections. Nutr Cycl Agroecosyst 81(2):129–144CrossRefGoogle Scholar
  5. Anton-Fernandez C, Astrup R (2012) Empirical harvest models and their use in regional business-as-usual scenarios of timber supply and carbon stock development. Scand J For Res 27(4):379–392CrossRefGoogle Scholar
  6. Armentano TV, Menges ES (1986) Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. J Ecol 74(3):755–774CrossRefGoogle Scholar
  7. Aurela M, Laurila T, Tuovinen JP (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys Res Lett. doi: 10.1029/2004gl020315 Google Scholar
  8. Aurela M, Riutta T, Laurila T, Tuovinen JP, Vesala T, Tuittila ES, Rinne J, Haapanala S, Laine J (2007) CO2 exchange of a sedge fen in southern Finland—the impact of a drought period. Tellus B 59(5):826–837CrossRefGoogle Scholar
  9. Aurela M, Lohila A, Tuovinen JP, Hatakka J, Riutta T, Laurila T (2009) Carbon dioxide exchange on a northern boreal fen. Boreal Environ Res 14(4):699–710Google Scholar
  10. Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 104(16):6550–6555CrossRefGoogle Scholar
  11. Balascio NL, Bradley RS (2012) Evaluating Holocene climate change in northern Norway using sediment records from two contrasting lake systems. J Paleolimnol 48(1):259–273CrossRefGoogle Scholar
  12. Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC (2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488(7409):70 CrossRefGoogle Scholar
  13. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2(9):598–600CrossRefGoogle Scholar
  14. Beldring S, Roald LA, Voksø A (2002) Avrenningskart for Norge. Årsmiddelverdier for avrenning 1961–1990. In: Norges vassdrags- og energidirektorat, p 50Google Scholar
  15. Beldring S, Engeland K, Roald LA, Sælthun NR, Voksø A (2003) Estimation of parameters in a distributed precipitation-runoff model for Norway. Hydrol Earth Syst Sci 7:304–316CrossRefGoogle Scholar
  16. Berger A, Gschwantner T, McRoberts RE, Schadauer K (2014) Effects of measurement errors on individual tree stem volume estimates for the Austrian National Forest Inventory. For Sci 60(1):14–24Google Scholar
  17. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Change Biol 12(5):862–882CrossRefGoogle Scholar
  18. Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys Res Lett 32(14):L14601. doi: 10.1029/2005gl023053 CrossRefGoogle Scholar
  19. Bryn A (2008) Recent forest limit changes in south-east Norway: effects of climate change or regrowth after abandoned utilisation? Nor J Geogr 62(4):251–270CrossRefGoogle Scholar
  20. Buffam I, Turner MG, Desai AR, Hanson PC, Rusak JA, Lottig NR, Stanley EH, Carpenter SR (2011) Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Glob Change Biol 17(2):1193–1211CrossRefGoogle Scholar
  21. Callesen I, Liski J, Raulund-Rasmussen K, Olsson MT, Tau-Strand L, Vesterdal L, Westman CJ (2003) Soil carbon stores in Nordic well-drained forest soils—relationships with climate and texture class. Glob Change Biol 9(3):358–370CrossRefGoogle Scholar
  22. Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870CrossRefGoogle Scholar
  23. Christensen TR, Johansson T, Olsrud M, Strom L, Lindroth A, Mastepanov M, Malmer N, Friborg T, Crill P, Callaghan TV (2007) A catchment-scale carbon and greenhouse gas budget of a subarctic landscape. Philos Trans R Soc A 365(1856):1643–1656CrossRefGoogle Scholar
  24. Ciais P, Borges AV, Abril G, Meybeck M, Folberth G, Hauglustaine D, Janssens IA (2008) The impact of lateral carbon fluxes on the European carbon balance. Biogeosciences 5(5):1259–1271CrossRefGoogle Scholar
  25. Clair TA, Pollock TL, Ehrman JM (1994) Exports of carbon and nitrogen from river basins in Canadas Atlantic provinces. Glob Biogeochem Cycles 8(4):441–450CrossRefGoogle Scholar
  26. Clair TA, Dennis IF, Belanger S (2013) Riverine nitrogen and carbon exports from the Canadian landmass to estuaries. Biogeochemistry 115(1–3):195–211CrossRefGoogle Scholar
  27. Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43(4):647–656CrossRefGoogle Scholar
  28. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):171–184CrossRefGoogle Scholar
  29. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173CrossRefGoogle Scholar
  30. de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manag 258(8):1814–1823CrossRefGoogle Scholar
  31. De Wit HA, Palosuo T, Hylen G, Liski J (2006) A carbon budget of forest biomass and soils in southeast Norway calculated using a widely applicable method. For Ecol Manag 225(1–3):15–26CrossRefGoogle Scholar
  32. De Wit HA, Mulder J, Hindar A, Hole L (2007) Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition. Environ Sci Technol 41(22):7706–7713CrossRefGoogle Scholar
  33. De Wit HA, Bryn A, Hofgaard A, Karstensen J, Kvalevag MM, Peters GP (2014) Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake. Glob Change Biol 20(7):2344–2355CrossRefGoogle Scholar
  34. Dittmar T, Kattner G (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar Chem 83(3–4):103–120CrossRefGoogle Scholar
  35. Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460(7255):616–619CrossRefGoogle Scholar
  36. Erlandsson M, Buffam I, Folster J, Laudon H, Temnerud J, Weyhenmeyer GA, Bishop K (2008) Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Glob Change Biol 14(5):1191–1198CrossRefGoogle Scholar
  37. Frolking S, Talbot J, Jones MC, Treat CC, Kauffman JB, Tuittila ES, Roulet N (2011) Peatlands in the Earth’s 21st century climate system. Environ Rev 19:371–396CrossRefGoogle Scholar
  38. Gielen B, Neirynck J, Luyssaert S, Janssens IA (2011) The importance of dissolved organic carbon fluxes for the carbon balance of a temperate Scots pine forest. Agric For Meteorol 151(3):270–278CrossRefGoogle Scholar
  39. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu SR, Nabuurs GJ, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the Northern Hemisphere. Ecol Appl 12(3):891–899CrossRefGoogle Scholar
  40. Gorham E (1991) Northern peatlands—role in the carbon-cycle and probable responses to climatic warming. Ecol Appl 1(2):182–195CrossRefGoogle Scholar
  41. Granhus A, Hylen G, Nilsen J (2012) Skogen i Norge. Statistics of forest conditions and resources in Norway. In: Norwegian with English summary. In: Ressursoversikt fra Skog og landskap 03/2012, Ås, p 85Google Scholar
  42. Grønlund A, Hauge A, Hovde A, Rasse DP (2008a) Carbon loss estimates from cultivated peat soils in Norway: a comparison of three methods. Nutr Cycl Agroecosyst 81(2):157–167CrossRefGoogle Scholar
  43. Haaland S, Austnes K, Kaste O, Mulder J, Riise G, Vestgarden LS, Stuanes AO (2008) Manipulation of precipitation in small headwater catchments at Storgama, Norway: effects on leaching of organic carbon and nitrogen species. Ambio 37(1):48–55CrossRefGoogle Scholar
  44. Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27(5–6):195–212CrossRefGoogle Scholar
  45. Henriksen A, Skjelkvale BL, Mannio J, Wilander A, Harriman R, Curtis C, Jensen JP, Fjeld E, Moiseenko T (1998) Northern European lake survey, 1995—Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales. Ambio 27(2):80–91Google Scholar
  46. Holmes RM, McClelland JW, Peterson BJ, Tank SE, Bulygina E, Eglinton TI, Gordeev VV, Gurtovaya TY, Raymond PA, Repeta DJ, Staples R, Striegl RG, Zhulidov AV, Zimov SA (2012) Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuar Coasts 35(2):369–382CrossRefGoogle Scholar
  47. Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water—fluxes and processes. Environ Pollut 84(3):301–324CrossRefGoogle Scholar
  48. Humborg C, Mörth C-M, Sundbom M, Borg H, Blenckner T, Giesler R, Ittekot V (2010) CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Glob Change Biol 16:1966–1978CrossRefGoogle Scholar
  49. Huotari J, Nykänen H, Forsius M, Arvola L (2013) Effect of catchment characteristics on aquatic carbon export from a boreal catchment and its importance in regional carbon cycling. Glob Change Biol 19(12):3607–3620CrossRefGoogle Scholar
  50. Hyvonen R, Ågren GI (2001) Decomposer invasion rate, decomposer growth rate, and substrate chemical quality: how they influence soil organic matter turnover. Can J For Res 31(9):1594–1601CrossRefGoogle Scholar
  51. IPCC (2006) Chapter 3: uncertainty. In: Eggleston HA, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Guidelines for national greenhouse gas inventories. Volume 1: general guidance and reporting. IGES, HayamaGoogle Scholar
  52. IPCC (2014) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. In: Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG (eds) Hiraishi T. IPCC, SwitzerlandGoogle Scholar
  53. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3–4):253–268CrossRefGoogle Scholar
  54. Johansen A (1997) Myrarealer og torvressurser i Norge (peatland area and turf-resources in Norway). Jordforsk, Ås, p 37 (in Norwegian)Google Scholar
  55. Jonsson A, Algesten G, Bergstrom AK, Bishop K, Sobek S, Tranvik LJ, Jansson M (2007) Integrating aquatic carbon fluxes in a boreal catchment carbon budget. J Hydrol 334(1–2):141–150CrossRefGoogle Scholar
  56. Kammer A, Hagedorn F, Shevchenko I, Leifeld J, Guggenberger G, Goryacheva T, Rigling A, Moiseev P (2009) Treeline shifts in the Ural Mountains affect soil organic matter dynamics. Glob Change Biol 15(6):1570–1583CrossRefGoogle Scholar
  57. Kasimir-Klemedtsson A, Klemedtsson L, Berglund K, Martikainen P, Silvola J, Oenema O (1997) Greenhouse gas emissions from farmed organic soils: a review. Soil Use Manag 13(4):245–250CrossRefGoogle Scholar
  58. Kleja DB, Svensson M, Majdi H, Jansson PE, Langvall O, Bergkvist B, Johansson MB, Weslien P, Truusb L, Lindroth A, Agren GI (2008) Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden. Biogeochemistry 89(1):7–25CrossRefGoogle Scholar
  59. Kortelainen P, Pajunen H, Rantakari M, Saarnisto M (2004) A large carbon pool and small sink in boreal Holocene lake sediments. Glob Change Biol 10(10):1648–1653CrossRefGoogle Scholar
  60. Kortelainen P, Mattsson T, Finer L, Ahtiainen M, Saukkonen S, Sallantaus T (2006) Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquat Sci 68(4):453–468CrossRefGoogle Scholar
  61. Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220(1–3):242–258CrossRefGoogle Scholar
  62. Larsen S, Andersen T, Hessen DO (2011) The pCO(2) in boreal lakes: organic carbon as a universal predictor? Glob Biogeochem Cycles 25:Gb2012. doi: 10.1029/2010gb003864 Google Scholar
  63. Le Quéré C, Peters GP, Andres RJ, Andrew RM, Boden T, Ciais P, Friedlingstein P, Houghton RA, Marland G, Moriarty R, Sitch S, Tans P, Arneth A, Arvanitis A, Bakker DCE, Bopp L, Canadell JG et al (2013) Global carbon budget 2013. Earth Syst Sci Data Discuss 6:689–760CrossRefGoogle Scholar
  64. Lehtonen A, Makipaa R, Heikkinen J, Sievanen R, Liski J (2004) Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manag 188(1–3):211–224CrossRefGoogle Scholar
  65. Liski J, Nissinen A, Erhard M, Taskinen O (2003) Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Glob Change Biol 9(4):575–584CrossRefGoogle Scholar
  66. Liski J, Palosuo T, Peltoniemi M, Sievanen R (2005) Carbon and decomposition model Yasso for forest soils. Ecol Model 189(1–2):168–182CrossRefGoogle Scholar
  67. Liski J, Lehtonen A, Palosuo T, Peltoniemi M, Eggers T, Muukkonen P, Makipaa R (2006) Carbon accumulation in Finland’s forests 1922–2004—an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Ann For Sci 63(7):687–697CrossRefGoogle Scholar
  68. Lund M, Lindroth A, Christensen TR, Strom L (2007) Annual CO2 balance of a temperate bog. Tellus B 59(5):804–811CrossRefGoogle Scholar
  69. Lund M, Lafleur PM, Roulet NT, Lindroth A, Christensen TR, Aurela M, Chojnicki BH, Flanagan LB, Humphreys ER, Laurila T, Oechel WC, Olejnik J, Rinne J, Schubert P, Nilsson MB (2010) Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob Change Biol 16(9):2436–2448Google Scholar
  70. Lundstrom US, van Breemen N, Bain D (2000) The podzolization process. A review. Geoderma 94(2–4):91–107CrossRefGoogle Scholar
  71. Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455(7210):213–215CrossRefGoogle Scholar
  72. Luyssaert S, Reichstein M, Schulze ED, Janssens IA, Law BE, Papale D, Dragoni D, Goulden ML, Granier A, Kutsch WL, Linder S, Matteucci G, Moors E, Munger JW, Pilegaard K, Saunders M, Falge EM (2009) Toward a consistency cross-check of eddy covariance flux-based and biometric estimates of ecosystem carbon balance. Glob Biogeochem Cycle 23:GB3009. doi: 10.1029/2008GB003377
  73. Luyssaert S, Ciais P, Piao SL, Schulze ED, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, van der Werf GR, Janssens IA, C-IS Team (2010) The European carbon balance. Part 3: forests. Glob Change Biol 16(5):1429–1450CrossRefGoogle Scholar
  74. Maljanen M, Sigurdsson BD, Guomundsson J, Oskarsson H, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries—present knowledge and gaps. Biogeosciences 7(9):2711–2738CrossRefGoogle Scholar
  75. Marklund LG (1988) Biomassafunktioner för tall, gran och björk i Sverige. Biomass functions for pine, spruce and birch in Sweden. In: Sveriges Lantbruksuniversitet, Institutionen för skogstaxering, pp 1–79Google Scholar
  76. Mattsson T, Kortelainen P, Raike A (2005) Export of DOM from boreal catchments: impacts of land use cover and climate. Biogeochemistry 76(2):373–394CrossRefGoogle Scholar
  77. Mettrop IS, Cusell C, Kooijman AM, Lamers LPM (2014) Nutrient and carbon dynamics in peat from rich fens and Sphagnum-fens during different gradations of drought. Soil Biol Biochem 68:317–328CrossRefGoogle Scholar
  78. Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen—a synthesis for temperate forests. Biogeochemistry 52(2):173–205CrossRefGoogle Scholar
  79. Michalzik B, Tipping E, Mulder J, Lancho JFG, Matzner E, Bryant CL, Clarke N, Lofts S, Esteban MAV (2003) Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry 66(3):241–264CrossRefGoogle Scholar
  80. Miljødirektoratet (2010) Greenhouse gas emissions 1990–2008. In: Agency CaP (ed) National Inventory Report 2010 Norway. TA 2639/2010. Climate and Pollution Agency, OsloGoogle Scholar
  81. Miljødirektoratet (2013) Greenhouse gas emissions 1990–2011. In: Agency CaP (ed) National Inventory Report Norway. TA 3030/2013. Climate and Pollution Agency, OsloGoogle Scholar
  82. Moen A (1987) The regional vegetation of Norway; that of Central Norway in particular. Norsk Geogr Tidsskr Nor J Geogr 41:179–226CrossRefGoogle Scholar
  83. Moen A, Øien D-I (2011) Faktaark fra to prosjekter med vurdering av truethet og vernestatus for våtmark (myr og kilde) i Norge. (Factsheet from two projects with assessment of threats and conservation status for wetlands in Norway). In: Norges teknisk-naturvitenskapelige universitet, Vitenskapsmuseet, Trondheim, p 68Google Scholar
  84. Moen A, Lyngstad A, Øien D-I (2011) Faglig grunnlag til handlingsplan for høgmyr i innlandet (typisk høgmyr). (Background for conservation of raised mires in inland Norway). In: Rapport botanisk serie 2011-3. Norges teknisk-naturvitenskapelige universitet, Vitenskapsmuseet, Trondheim, p 66. In Norwegian with English summaryGoogle Scholar
  85. Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450(7169):537–540Google Scholar
  86. Muukkonen P, Mäkipää R (2006) Empirical biomass models of understorey vegetation in boreal forests according to stand and site attributes. Boreal Environ Res 11(5):355–369Google Scholar
  87. Nabuurs GJ, Schelhaas MJ, Mohren GMJ, Field CB (2003) Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Glob Change Biol 9(2):152–160CrossRefGoogle Scholar
  88. Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien P, Lindroth A (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Glob Change Biol 14(10):2317–2332CrossRefGoogle Scholar
  89. Olefeldt D, Roulet NT, Bergeron O, Crill P, Backstrand K, Christensen TR (2012) Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands. Geophys Res Lett 39:L03501. doi: 10.1029/2011gl050355 CrossRefGoogle Scholar
  90. Olefeldt D, Roulet N, Giesler R, Persson A (2013) Total waterborne carbon export and DOC composition from ten nested subarctic peatland catchments—importance of peatland cover, groundwater influence, and inter-annual variability of precipitation patterns. Hydrol Process 27(16):2280–2294CrossRefGoogle Scholar
  91. OSPAR (2013) OSPAR contracting parties’ RID 2011 data report. OSPAR, London, p 77. ISBN 978-1-909159-31-0Google Scholar
  92. Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993CrossRefGoogle Scholar
  93. Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48(1):147–163CrossRefGoogle Scholar
  94. Peltoniemi M, Makipaa R, Liski J, Tamminen P (2004) Changes in soil carbon with stand age—an evaluation of a modelling method with empirical data. Glob Change Biol 10(12):2078–2091CrossRefGoogle Scholar
  95. Peltoniemi M, Palosuo T, Monni S, Makipaa R (2006) Factors affecting the uncertainty of sinks and stocks of carbon in Finnish forests soils and vegetation. For Ecol Manag 232(1–3):75–85CrossRefGoogle Scholar
  96. Petersson H, Ståhl G (2006) Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scand J For Res 21:84–93CrossRefGoogle Scholar
  97. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298(5870):156–159CrossRefGoogle Scholar
  98. Raike A, Kortelainen P, Mattsson T, Thomas DN (2012) 36 year trends in dissolved organic carbon export from Finnish rivers to the Baltic Sea. Sci Total Environ 435:188–201CrossRefGoogle Scholar
  99. Randerson JT, Chapin FS, Harden JW, Neff JC, Harmon ME (2002) Net ecosystem production: a comprehensive measure of net carbon accumulation by ecosystems. Ecol Appl 12(4):937–947CrossRefGoogle Scholar
  100. Rantakari M, Kortelainen P (2008) Controls of organic and inorganic carbon in randomly selected Boreal lakes in varied catchments. Biogeochemistry 91(2–3):151–162CrossRefGoogle Scholar
  101. Rantakari M, Mattsson T, Kortelainen P, Piirainen S, Finer L, Ahtiainen M (2010) Organic and inorganic carbon concentrations and fluxes from managed and unmanaged boreal first-order catchments. Sci Total Environ 408(7):1649–1658CrossRefGoogle Scholar
  102. Raymond PA, Bauer JE (2001) Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409(6819):497–500CrossRefGoogle Scholar
  103. Rognstad O, Steinset TA (2012) Landbruket i Norge 2011. Agriculture in Norway 2011. Statistics Norway, Oslo-KongsvingerGoogle Scholar
  104. Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Change Biol 13(2):397–411CrossRefGoogle Scholar
  105. Sagerfors J, Lindroth A, Grelle A, Klemedtsson L, Weslien P, Nilsson M (2008) Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere. J Geophys Res Biogeosci. doi: 10.1029/2006jg000306 Google Scholar
  106. Schimel D (2007) Carbon cycle conundrums. Proc Natl Acad Sci USA 104(47):18353–18354CrossRefGoogle Scholar
  107. Schulze ED, Luyssaert S, Ciais P, Freibauer A, Janssens IA, Soussana JF, Smith P, Grace J, Levin I, Thiruchittampalam B, Heimann M, Dolman AJ, Valentini R, Bousquet P, Peylin P, Peters W, Rodenbeck C, Etiope G, Vuichard N, Wattenbach M, Nabuurs GJ, Poussi Z, Nieschulze J, Gash JH, CarboEurope T (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nat Geosci 2(12):842–850CrossRefGoogle Scholar
  108. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9(2):161–185CrossRefGoogle Scholar
  109. Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Change Biol 14(9):2015–2039CrossRefGoogle Scholar
  110. Skarbøvik E, Stålnacke PG, Kaste Ø, Selvik JR, Tjomsland T, Høgåsen T, Aakerøy PA, Haaland S, Beldring S (2009) Riverine inputs and direct discharges to Norwegian coastal waters—2008. In. NIVA, Oslo, p 75Google Scholar
  111. Skarbøvik E, Stålnacke PG, Austnes K, Selvik JR, Pengerud A, Tjomsland T, Høgåsen T, Beldring S (2013) Riverine inputs and direct discharges to Norwegian coastal waters—2012. In: NIVA report, vol 6584-2012. NIVA, Oslo, p 67Google Scholar
  112. Sobek S, Algesten G, Bergström AK, Jansson M, Tranvik LJ (2003) The catchment and climate regulation of pCO2 in boreal lakes. Glob Change Biol 9(4):630–641CrossRefGoogle Scholar
  113. Speed JDM, Martinsen V, Mysterud A, Mulder J, Holand O, Austrheim G (2014) Long-term increase in aboveground carbon stocks following exclusion of grazers and forest establishment in an alpine ecosystem. Ecosystems 17(7):1138–1150CrossRefGoogle Scholar
  114. Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010) Increased tree carbon storage in response to nitrogen deposition in the US. Nat Geosci 3(1):13–17CrossRefGoogle Scholar
  115. Tommervik H, Johansen B, Riseth JA, Karlsen SR, Solberg B, Hogda KA (2009) Above ground biomass changes in the mountain birch forests and mountain heaths of Finnmarksvidda, northern Norway, in the period 1957–2006. For Ecol Manag 257(1):244–257CrossRefGoogle Scholar
  116. Tomter S, Hylen G, Nilsen J (2010) National forest inventories. Pathways for common reporting. Norway. In: Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (eds) Norway. Springer, Heidelberg, pp 411–424Google Scholar
  117. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6):2298–2314CrossRefGoogle Scholar
  118. Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland—application to boreal and subarctic regions. Holocene 12(1):69–80CrossRefGoogle Scholar
  119. Vuorenmaa J, Forsius M, Mannio J (2006) Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003. Sci Total Environ 365(1–3):47–65CrossRefGoogle Scholar
  120. Wallin MB, Grabs T, Buffam I, Laudon H, Agren A, Oquist MG, Bishop K (2013) Evasion of CO2 from streams—the dominant component of the carbon export through the aquatic conduit in a boreal landscape. Glob Change Biol 19(3):785–797CrossRefGoogle Scholar
  121. West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66(6):1930–1946CrossRefGoogle Scholar
  122. White AM, Thornton PE, Running SW, Nemani RR (2000) Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: net primary production controls. Earth Interact 4:1–85CrossRefGoogle Scholar
  123. Wilson D, Hisdal H, Lawrence D (2010) Has streamflow changed in the Nordic countries?—recent trends and comparisons to hydrological projections. J Hydrol 394(3–4):334–346CrossRefGoogle Scholar
  124. Worrall F, Burt T (2005) Reconstructing long-term records of dissolved CO2. Hydrol Process 19(9):1791–1806CrossRefGoogle Scholar
  125. Grønlund A, Knoth de Zarruk K, Rasse DP, Riley H, Klakegg O, Nystuen I (2008b) Status for emission and sequestration of carbon in cultivated soils. Kunnskapsstatus for utslipp og binding av karbon i jordbruksjord. Bioforsk Rapport. Bioforsk, Ås (in Norwegian)Google Scholar
  126. Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9(10):4071–4085CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Heleen A. de Wit
    • 1
    Email author
  • Kari Austnes
    • 1
  • Gro Hylen
    • 2
  • Lise Dalsgaard
    • 2
  1. 1.Norwegian Institute for Water ResearchOsloNorway
  2. 2.Norwegian Forest and Landscape InstituteÅsNorway

Personalised recommendations