, Volume 122, Issue 2–3, pp 375–393 | Cite as

Mg and Ca uptake by roots in relation to depth and allocation to aboveground tissues: results from an isotopic labeling study in a beech forest on base-poor soil

  • Gregory van der Heijden
  • Etienne Dambrine
  • Benoît Pollier
  • Bernhard Zeller
  • Jacques Ranger
  • Arnaud Legout


Many forest stands grow on acid and nutrient poor soils. To better understand how they cope with very low mineral resources, we investigated (1) Mg and Ca uptake in relation to depth, and (2) the allocation of these elements from the roots to the canopy, using a multi-isotopic (26Mg, 44Ca) tracing experiment in a beech stand on a very poor soil. The distribution of the tracers in the soil was taken from van der Heijden et al. (Plant Soil 369:33–45, 2013a, Geoderma 195–196:12–22, 2013b, For Ecol Manag 293:65–78, 2013c). A model simulating Mg, Ca, 26Mg and 44Ca uptake was developed and applied to estimate the vertical distribution of Mg and Ca uptake in the soil profile. The vertical distribution of tracers in aboveground biomass was measured from four felled trees 2 years after the application of the tracers. The modeled distribution of root uptake in relation to depth shows differences between Mg and Ca: the main source of Mg uptake is the litter layer (circa. 43 % of total uptake) and the top mineral soil (0–5 cm) for Ca (circa. 42 %). The deeper soil layers (15–60 cm) also contribute to uptake. The study does not show clear evidence that uptake occurs in the very deep soil layers (>70 cm). The distribution of tracers in the aboveground biomass shows a vertical gradient from the stump to the canopy with no or very small amounts of tracers being observed in the foliage during the 2 years after the application of tracers. This suggests that Mg and Ca transport from roots to leaves along the xylem sap flow is quite slow. As Ca and Mg supply to the trees from deep soil horizons is not evidenced, and tracer transport from roots to the leaves is slow, we suggest that the tree internal pool of Ca and Mg may be more active than previously thought. This pool may act as a buffer when nutrient availability is in shortage.


Forest ecosystem Soil fertility Calcium Magnesium Stable isotope tracing Root Uptake Beech 

Supplementary material

10533_2014_47_MOESM1_ESM.pdf (456 kb)
Supplementary material 1 (PDF 455 kb)


  1. Attiwill PM (1968) The loss of elements from decomposing litter. Ecology 49(1):142–145CrossRefGoogle Scholar
  2. Augusto L, Zeller B, Midwood AJ, Swanston C, Dambrine E, Schneider A, Bosc A (2011) Two-year dynamics of foliage labelling in 8-year-old Pinus pinaster trees with (15)N, (26)Mg and (42)Ca-simulation of Ca transport in xylem using an upscaling approach. Ann For Sci 68(1):169–178CrossRefGoogle Scholar
  3. Baes AU, Bloom PR (1988) Exchange of alkaline earth cations in soil organic matter. Soil Sci 146(1):6–14CrossRefGoogle Scholar
  4. Bell CW, Biddulph O (1963) Translocation of calcium: exchange versus mass flow. Plant physiol 38(5):610–614CrossRefGoogle Scholar
  5. Berger TW, Swoboda S, Prohaska T, Glatzel G (2006) The role of calcium uptake from deep soils for spruce (Picea abies) and beech (Fagus sylvatica). For Ecol Manag 229(1–3):234–246CrossRefGoogle Scholar
  6. Biddulph O, Nakayama FS, Cory R (1961) Transpiration stream and ascension of calcium. Plant Physiol 36(4):429–436CrossRefGoogle Scholar
  7. Blair JM (1988) Nutrient release from decomposing foliar litter of 3 tree species with special reference to calcium, magnesium and potassium dynamics. Plant Soil 110(1):49–55CrossRefGoogle Scholar
  8. Bolou-Bi EB, Poszwa A, Leyval C, Vigier N (2010) Experimental determination of magnesium isotope fractionation during higher plant growth. Geochim Cosmochim 74(9):2523–2537CrossRefGoogle Scholar
  9. Bolou-Bi EB, Vigier N, Poszwa A, Boudot JP, Dambrine E (2012) Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France). Geochim Cosmochim 87:341–355CrossRefGoogle Scholar
  10. Bradfield EG (1976) Calcium complexes in the xylem sap of apple shoots. Plant Soil 44(2):495–499CrossRefGoogle Scholar
  11. Brandtberg PO, Bengtsson J, Lundkvist H (2004) Distributions of the capacity to take up nutrients by Betula spp. and Picea abies in mixed stands. For Ecol Manag 198(1–3):193–208CrossRefGoogle Scholar
  12. Brethes A, Brun J, Jabiol B, Ponge J, Toutain F (1995) Classification of forest humus forms: a French proposal. Ann For Sci 52(6):535–546CrossRefGoogle Scholar
  13. Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14(4):319–329CrossRefGoogle Scholar
  14. Bukovac MJ, Wittwer SH (1957) Absorption and mobility of foliar applied nutrients. Plant Physiol 32(5):428–435CrossRefGoogle Scholar
  15. Cenki-Tok B, Chabaux F, Lemarchand D, Schmitt A-D, Pierret M-C, Viville D, Bagard M-L, Stille P (2009) The impact of water–rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small, forested catchment (the Strengbach case). Geochim Cosmochim 73:2215–2228CrossRefGoogle Scholar
  16. Chishaki N, Yuda K, Inanaga S (2007) Differences in mobility of calcium applied to the aboveground parts of broad bean plants (Vicia faba L.). Soil Sci Plant Nutr 53(3):286–288CrossRefGoogle Scholar
  17. Cobert F, Schmitt AD, Bourgeade P, Labolle F, Badot PM, Chabaux F, Stille P (2011) Experimental identification of Ca isotopic fractionations in higher plants. Geochim Cosmochim 75(19):5467–5482CrossRefGoogle Scholar
  18. Core Team R (2013) R: a language and environment for statistical computing. Austria, ViennaGoogle Scholar
  19. da Silva EV, Bouillet JP, Goncalves JLD, Abreu CH, Trivelin PCO, Hinsinger P, Jourdan C, Nouvellon Y, Stape JL, Laclau JP (2011) Functional specialization of Eucalyptus fine roots: contrasting potential uptake rates for nitrogen, potassium and calcium tracers at varying soil depths. Funct Ecol 25(5):996–1006CrossRefGoogle Scholar
  20. Dambrine E, Legoaster S, Ranger J (1991) Growth and mineral-nutrition of a spruce stand on poor soil. 2. root uptake and translocation of minerals during growth. Acta Oecol Int J Ecol 12(6):791–808Google Scholar
  21. DeSutter TM, Pierzynski GM, Baker LR (2006) Flow-through and batch methods for determining calcium-magnesium and magnesium-calcium selectivity. Soil Sci Soc Am J 70(2):550–554CrossRefGoogle Scholar
  22. Dijkstra FA (2003) Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US. For Ecol Manag 175(1–3):185–194CrossRefGoogle Scholar
  23. Dijkstra FA, Smits MM (2002) Tree species effects on calcium cycling: the role of calcium uptake in deep soils. Ecosystems 5(4):385–398CrossRefGoogle Scholar
  24. Drouet T, Herbauts J, Gruber W, Demaiffe D (2005) Strontium isotope composition as a tracer of calcium sources in two forest ecosystems in Belgium. Geoderma 126(3–4):203–223CrossRefGoogle Scholar
  25. Farkaš J, Déjeant A, Novák M, Jacobsen SB (2011) Calcium isotope constraints on the uptake and sources of Ca2+ in a base-poor forest: a new concept of combining stable (δ44/42Ca) and radiogenic (εCa) signals. Geochim Cosmochim 75(22):7031–7046CrossRefGoogle Scholar
  26. Feller MC (2005) Forest harvesting and streamwater inorganic chemistry in western North America: a review1. JAWRA J Am Water Resour Assoc 41(4):785–811CrossRefGoogle Scholar
  27. Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annual review of plant biology. Annual reviews, vol 56. Ford University Press, Palo Alto, pp 41–71Google Scholar
  28. Galy A, Yoffe O, Janney PE, Williams RW, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon ID, Ramon E, Carignan J (2003) Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J Anal Atom Spectrom 18(11):1352–1356CrossRefGoogle Scholar
  29. Gosz JR, Likens GE, Bormann FH (1973) Nutrient release from decomposing leaf and branch litter in the hubbard brook forest, new hampshire. Ecol Monogr 43(2):173–191CrossRefGoogle Scholar
  30. Hansson K, Olsson BA, Olsson M, Johansson U, Kleja DB (2011) Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden. For Ecol Manag 262(3):522–530CrossRefGoogle Scholar
  31. Hedin LO, Likens GE (1996) Atmospheric dust and acid rain. Sci Am 275:88–92CrossRefGoogle Scholar
  32. Hodson MJ, Sangster AG (1998) Mineral deposition in the needles of white spruce Picea glauca (Moench.) Voss. Ann Bot 82(3):375–385CrossRefGoogle Scholar
  33. Hoefs J (2009) Stable isotope geochemistry, 6th edn. Springer-Verlag, GermanyGoogle Scholar
  34. Holmden C, Bélanger N (2010) Ca isotope cycling in a forested ecosystem. Geochim Cosmochim 74:995–1015CrossRefGoogle Scholar
  35. Jonard M, André F, Dambrine E, Ponette Q, Ulrich E (2009) Temporal trends in the foliar nutritional status of the French, Walloon and Luxembourg braod-leaved plots of forest monitoring. Ann For Sci 66:412–421CrossRefGoogle Scholar
  36. Jonard M, Legout A, Nicolas M, Dambrine E, Nys C, Ulrich E, van der Perre R, Ponette Q (2012) Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: a long-term integrated perspective. Glob Change Biol 18(2):711–725CrossRefGoogle Scholar
  37. Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočić N, Waldner P, Benham S, Hansen K, Merilä P, Ponette Q, de la Cruz AC, Roskams P, Nicolas M, Croisé L, Ingerslev M, Matteucci G, Decinti B, Bascietto M, Rautio P (2014) Tree mineral nutrition is deteriorating in Europe. Glob Change BiolGoogle Scholar
  38. Kreutzweiser DP, Hazlett PW, Gunn JM (2008) Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: a review. Environ Rev 16:157–179CrossRefGoogle Scholar
  39. Laskowski R, Niklinska M, Maryanski M (1995) The dynamics of chemical-elements in forest litter. Ecology 76(5):1393–1406CrossRefGoogle Scholar
  40. Legout A (2008) Cycles Biogéochimiques et bilans de fertilité minérale en hêtraies de plaine. In: AGROPARISTECH-ENGREF, Nancy, p 281Google Scholar
  41. Lorenz N, Verdell K, Ramsier C, Dick RP (2010) A rapid assay to estimate soil microbial biomass potassium in agricultural soils. Soil Sci Soc Am J 74(2):512–516CrossRefGoogle Scholar
  42. Maheswaran J, Attiwill PM (1987) Loss of organic matter, elements, and organic fractions in decomposing Eucalyptus microcarpa leaf litter. Can J Bot 65(12):2601–2606CrossRefGoogle Scholar
  43. Mareschal L (2008) Effet des substitutions d’essences forestières sur l’évolution des sols et de leur minéralogie : bilan après 28 ans dans le site expérimental de Breuil (Morvan). In: Ressources Procédés Produits Environnement, Université Henri Poincaré, Nancy, p 328Google Scholar
  44. Marschner H (1995) Mineral nutrition of higher plants. Academic, LondonGoogle Scholar
  45. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6(4):301–312CrossRefGoogle Scholar
  46. Meerts P (2002) Mineral nutrient concentrations in sapwood and heartwood: a literature review. Ann For Sci 59(7):713–722CrossRefGoogle Scholar
  47. Moukoumi J (2006) Effet des essences forestières sur la biodégradation des matières organiques : impacts sur la dynamique et le cycle du carbone, de l’azote et des éléments minéraux, Université Henri Poincaré, Nancy, p 255Google Scholar
  48. Nakata PA (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci 164(6):901–909CrossRefGoogle Scholar
  49. Olsson BA, Bengtsson J, Lundkvist H (1996) Effects of different forest harvest intensities on the pools of exchangeable cations in coniferous forest soils. For Ecol Manag 84(1–3):135–147CrossRefGoogle Scholar
  50. Osono T, Takeda H (2004) Potassium, calcium, and magnesium dynamics during litter decomposition in a cool temperate forest. J For Res 9(1):23–31CrossRefGoogle Scholar
  51. Penninckx V, Glineur S, Gruber W, Herbauts J, Meerts P (2001) Radial variations in wood mineral element concentrations: a comparison of beech and pedunculate oak from the Belgian Ardennes. Ann For Sci 58(3):253–260CrossRefGoogle Scholar
  52. Plamboeck AH, Nylen T, Grip H (2000) Uptake of cations under two different water regimes in a boreal Scots pine forest. Sci Total Environ 256(2–3):175–183CrossRefGoogle Scholar
  53. Proe MF, Midwood AJ, Craig J (2000) Use of stable isotopes to quantify nitrogen, potassium and magnesium dynamics in young Scots pine (Pinus sylvestris). New Phytol 146(3):461–469CrossRefGoogle Scholar
  54. Ranger J, Andreux F, Bienaimé S, Berthelin J, Bonnaud P, Boudot JP, Bréchet C, Buée M, Calmet J, Chaussod R, Gelhaye D, Gelhaye L, Gérard F, Jaffrain J, Lejon D, Le Tacon F, Lévêque J, Maurice J, Merlet D, Moukoumi J, Munier-Lamy C, Nourrisson G, Pollier B, Ranjard L, Simonsson M, Turpault MP, Vairelles D, Zeller B (2004) Effet des substitutions d’essence sur le fonctionnement organo-minéral de l’écosystème forestier, sur les communautés microbiennes et sur la diversité des communautés fongiques mycorhiziennes et saprophytes (cas du dispositif de Breuil—Morvan), Rapport final contrat INRA-GIP Ecofor 2001-24, No. INRA 1502A. In: INRA Biogéochimie des Ecosystèmes Forestiers (UR 1138), 54280, ChampenouxGoogle Scholar
  55. Saggar S, Bettany JR, Stewart JWB (1981) Measurement of microbial sulfur in soil. Soil Biol Biochem 13(6):493–498CrossRefGoogle Scholar
  56. Salmon RC (1964) Cation exchange reactions. J Soil Sci 15(2):273–283CrossRefGoogle Scholar
  57. Schell J (1997) Interdependence of pH, malate concentration, and calcium and magnesium concentrations in the xylem sap of beech roots. Tree Physiol 17(7):479–483CrossRefGoogle Scholar
  58. Schweingruber FH (1993) Trees and wood in dendrochronology: morphological, anatomical, and tree-ring analytical characteristics of trees frequently used in dendrochronology. Springer-Verlag, BerlinCrossRefGoogle Scholar
  59. Sentenac H, Grignon C (1981) A model for predicting ionic equilibrium concentrations in cell-walls. Plant Physiol 68(2):415–419CrossRefGoogle Scholar
  60. Tessier Du, Cros E (1981) Le hêtre. INRA, ParisGoogle Scholar
  61. Thiffault E, Hannam KD, Paré D, Titus BD, Hazlett PW, Maynard DG, Brais S (2011) Effects of forest biomass harvesting on soil productivity in boreal and temperate forests: a review. Environ Rev 19(NA):278–309CrossRefGoogle Scholar
  62. Tipper ET, Galy A, Bickle MJ (2008) Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: lithological or fractionation control? Geochim Cosmochim 72(4):1057–1075CrossRefGoogle Scholar
  63. van der Heijden G, Legout A, Nicolas M, Ulrich E, Johnson DW, Dambrine E (2011) Long-term sustainability of forest ecosystems on sandstone in the Vosges Mountains (France) facing atmospheric deposition and silvicultural change. For Ecol Manag 261(3):730–740CrossRefGoogle Scholar
  64. van der Heijden G, Legout A, Midwood A, Craig C-A, Pollier B, Ranger J, Dambrine E (2013a) Mg and Ca root uptake and vertical transfer in soils assessed by an in situ ecosystem-scale multi-isotopic (26 Mg & 44Ca) tracing experiment in a beech stand (Breuil-Chenue, France). Plant Soil 369(1–2):33–45CrossRefGoogle Scholar
  65. van der Heijden G, Legout A, Pollier B, Bréchet C, Ranger J, Dambrine E (2013b) Tracing and modeling preferential flow in a forest soil: potential impact on nutrient leaching. Geoderma 195–196:12–22CrossRefGoogle Scholar
  66. van der Heijden G, Legout A, Pollier B, Mareschal L, Turpault MP, Ranger J, Dambrine E (2013c) Assessing Mg and Ca depletion from broadleaf forest soils and potential causes: a case study in the Morvan Mountains. For Ecol Manag 293:65–78CrossRefGoogle Scholar
  67. van der Heijden G, Legout A, Pollier B, Ranger J, Dambrine E (2014) The dynamics of calcium and magnesium inputs by throughfall in a forest ecosystem on base poor soil are very slow and conservative: evidence from an isotopic tracing experiment (26 Mg and 44Ca). Biogeochemistry 118(1–3):413–442CrossRefGoogle Scholar
  68. Vandegeijn SC, Petit CM (1979) Transport of divalent-cations: cation-exchange capacity of intact xylem vessels. Plant Physiol 64(6):954–958CrossRefGoogle Scholar
  69. Vejre H, Hoppe C (1998) Distribution of Ca, K, Mg, and P in acid forest soils in plantations of Picea abies: evidence of the base-pump effect. Scand J For Res 13(3):265–273CrossRefGoogle Scholar
  70. Volk GM, Lynch-Holm VJ, Kostman TA, Goss LJ, Franceschi VR (2002) The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in pistia stratiotes leaves. Plant Biol 4(1):34–45CrossRefGoogle Scholar
  71. Vuorenmaa J (2004) Long-term changes of acidifying deposition in Finland (1973–2000). Environ Pollut 128:351–362CrossRefGoogle Scholar
  72. Weatherall A, Proe MF, Craig J, Cameron AD, Midwood AJ (2006) Internal cycling of nitrogen, potassium and magnesium in young Sitka spruce. Tree Physiol 26(5):673–680CrossRefGoogle Scholar
  73. Wiegand BA, Chadwick OA, Vitousek PM, Wooden JL (2005) Ca cycling and isotopic fluxes in forested ecosystems in Hawai. Geophys Res Lett 32(11)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gregory van der Heijden
    • 1
  • Etienne Dambrine
    • 2
  • Benoît Pollier
    • 1
  • Bernhard Zeller
    • 1
  • Jacques Ranger
    • 1
  • Arnaud Legout
    • 1
  1. 1.INRA – UR 1138 Biogéochimie des Ecosystèmes ForestiersChampenouxFrance
  2. 2.Centre Interdisciplinaire Scientifique de la MontagneINRA – UMR 042 CARRTEL, Université de SavoieLe Bourget-Du-Lac CedexFrance

Personalised recommendations