, Volume 121, Issue 3, pp 565–580 | Cite as

Stable isotopic evidence of enhanced export of microbially derived \({\text{NO}}_{3}^{ - }\) following active layer slope disturbance in the Canadian High Arctic

  • Nicole L. LouiseizeEmail author
  • Melissa J. Lafrenière
  • Meredith G. Hastings


Permafrost disturbance is expected to alter nitrogen (N) export in High Arctic watersheds by enhancing loads of dissolved inorganic N (DIN), particularly nitrate (\({\text{NO}}_{3}^{ - }\)), by enabling nitrification and/or the mobilization of N previously sequestered in deeper permafrost soils. Using chemical, isotopic, and hydrologic measurements, we compare the seasonal evolution of concentrations and sources of \({\text{NO}}_{3}^{ - }\) in a stream draining an undisturbed catchment with one that drains a catchment that has been affected by active layer detachments (ALDs) at the Cape Bounty Arctic Watershed Observatory (74°54′N, 109°35′W) on Melville Island, Nunavut. Oxygen stable isotope values of \({\text{NO}}_{3}^{ - }\)18O-\({\text{NO}}_{3}^{ - }\)) from streamwater indicate that \({\text{NO}}_{3}^{ - }\) in runoff predominantly originated from atmospheric sources in both catchments only during the first days of melt. In the undisturbed catchment, low \({\text{NO}}_{3}^{ - }\) concentrations and elevated streamwater δ18O-\({\text{NO}}_{3}^{ - }\) values relative to the disturbed catchment indicate that \({\text{NO}}_{3}^{ - }\) export was suppressed by sink mechanisms. In contrast, low δ18O-\({\text{NO}}_{3}^{ - }\) values and high \({\text{NO}}_{3}^{ - }\) concentrations in runoff from the disturbed catchment indicate that the supply of \({\text{NO}}_{3}^{ - }\) from microbial sources far outweighed sinks in the watershed. This research demonstrates that ALDs enhanced the export of microbially derived \({\text{NO}}_{3}^{ - }\) relative to undisturbed watersheds, and that this is likely a result of limited \({\text{NO}}_{3}^{ - }\) retention and enhanced nitrification in the mineral soils exposed in the scar zones of ALDs.


Active layer detachments Atmospheric deposition Denitrification High Arctic Nitrate Nitrification 



This research was funded by the Arctic Net Network of Centres of Excellence of Canada. We also extend our gratitude to the Polar Continental Shelf Program (PCSP), for exceptional logistical support. Valuable field, laboratory, and GIS assistance was provided by K. Rutherford, G. Montross, S. Montross, D Lamhonwah and A. Rudy.


  1. American Society of Civil Engineers (1974) Generalized discharge relations for cutthroat flumes. J Irrig Drain Div-ASCE 98(IR4):569–583Google Scholar
  2. Amoroso A, Domine F, Esposito G et al (2010) Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere. Environ Sci Technol 44:714–719CrossRefGoogle Scholar
  3. Ansari AH, Hodson AJ, Heaton THE et al (2013) Stable isotopic evidence for nitrification and denitrification in a High Arctic glacial ecosystem. Biogeochemistry 113:341–357. doi: 10.1007/s10533-012-9761-9 CrossRefGoogle Scholar
  4. Aravena R, Evans ML, Cherry JA (1993) Stable isotopes of oxygen and nitrogen in sources identification of nitrate from septic systems. Ground Water 31(2):180–186. doi: 10.1111/j.1745-6584.1993.tb01809.x CrossRefGoogle Scholar
  5. Atkinson DM, Treitz PM (2012) Arctic Ecological classifications derived from vegetation community and satellite spectral data. Remote Sens 4:3948–3971. doi: 10.3390/rs4123948 CrossRefGoogle Scholar
  6. Barnes RT, Raymond PA, Casciotti KL (2008) Dual isotope analyses indicate efficient processing of atmospheric nitrate by forested watersheds in northeastern U.S. Biogeochemistry 90(1):15–27. doi: 10.1007/s10533-008-9227-2 CrossRefGoogle Scholar
  7. Böhlke JK, Eriksen GE, Revesz K (1997) Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A. Chem Geol 136:135–152CrossRefGoogle Scholar
  8. Böhlke JK, Mroczkowski SJ, Coplen TB (2003) Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration. Rapid Commun Mass Spectrom 17:1835–1846CrossRefGoogle Scholar
  9. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157CrossRefGoogle Scholar
  10. Bowden WB, Gooseff MN, Balser A et al (2008) Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: potential impacts on headwater stream ecosystems. J Geophys Res 113:G02026. doi: 10.1029/2007JG000470 Google Scholar
  11. Brooks PD, Williams MW (1999) Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrol Process 13:2177–2190CrossRefGoogle Scholar
  12. Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32(2):93–113CrossRefGoogle Scholar
  13. Buchwald C, Casciotti KL (2010) Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation. Limnol Oceanogr 55:1064–1074CrossRefGoogle Scholar
  14. Burns DA, Kendall C (2002) Analyses of 15N and 18O to differentiate NO3 sources in runoff at two watersheds in the Catskills Mountain of New York. Water Resour Res 38(5):1051. doi: 10.1029/2001WR000292 CrossRefGoogle Scholar
  15. Campbell DH, Kendall C, Chang CCY, Silva SR (2002) Pathways for nitrate release from an alpine watershed: determination using 15N and 18O. Water Resour Res 38(5):1052. doi: 10.1029/2001WR000294 CrossRefGoogle Scholar
  16. Casciotti KL, Sigman DM, Hastings MG et al (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74(19):4905–49012. doi: 10.1021/ac020113w CrossRefGoogle Scholar
  17. Cooper R, Thoss V, Watson H (2007) Factors influencing the release of dissolved organic carbon and dissolved forms of organic nitrogen from a small upland headwater during autumn runoff events. Hydrol Process 21:622–633CrossRefGoogle Scholar
  18. Favaro EA, Lamoureux SF (submitted) Antecedent Controls on Rainfall Runoff Response and Sediment Transport in a High Arctic Catchment, Geografiska Annaler, Series A: Physical Geography, GAA1405-043, submitted May 23, 2014.Google Scholar
  19. Frey KE, McClelland JW (2009) Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process 23:169–182. doi: 10.1002/hyp.7196 CrossRefGoogle Scholar
  20. Giblin AE, Nadelhoffer KJ, Shaver GR et al (1991) Biogeochemical diversity along a riverside toposequence. Arctic Alaska Ecol Monogr 61:415–435CrossRefGoogle Scholar
  21. Harms TK, Jones JB (2012) Thaw depth determine reaction and transport of inorganic nitrogen in valley bottom permafrost soils. Glob Change Biol 18:2958–2968. doi: 10.1111/j.1365-2486.2012.02731.x CrossRefGoogle Scholar
  22. Harms TK, Abbott BW, Jones JB (2014) Thermo-erosion gullies increase nitrogen available for hydrologic export. Biogeochemistry 117:299–311. doi: 10.1007/s10533-013-9862-0 CrossRefGoogle Scholar
  23. Hastings MG, Sigman DM, Lipschultz F (2003) Isotopic evidence for source changes of nitrate in rain at Bermuda. J Geophys Res 108(D24):4790. doi: 10.1029/2003JD003789 Google Scholar
  24. Hastings MG, Steig EJ, Sigman DM (2004) Seasonal variations in N and O isotopes of nitrate in snow at Summit, Grennland: implications for the study of nitrate in snow and ice cores. J Geophys Res 109:D20306. doi: 10.1029/2004JD004991 CrossRefGoogle Scholar
  25. Heaton THE, Wynn P, Tye AM (2004) Low 15N/14N ratios for nitrate in snow in the high arctic (79°N). Atmos Environ 38:5611–5621CrossRefGoogle Scholar
  26. Hobbie SE, Gough L (2002) Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 131:453–462CrossRefGoogle Scholar
  27. Hodson AJ, Mumford PN, Kohler J, Wynn PM (2005) Arctic glacial ecosystems: new insights from nutrient budgets. Biogeochemistry 72:233–256CrossRefGoogle Scholar
  28. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  29. Holloway JM, Dahlgren RA (2002) Nitrogen in rock: occurrences and biogeochemical implications. Global Biogeochem Cycles 16(4):1118CrossRefGoogle Scholar
  30. Holloway JM, Dahlgren RA, Casey WH (2001) Nitrogen release from rock and soil under simulated field conditions. Chem Geol 174:403–414CrossRefGoogle Scholar
  31. Holloway JM, Dahlgren RA, Hansen B, Casey WH (1998) Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature 395:785–788CrossRefGoogle Scholar
  32. Jones JB, Petrone KC, Finlay JC et al (2005) Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost. Geophys Res Lett 32(L02401):2005. doi: 10.1029/2004GL021734 Google Scholar
  33. Kaiser J, Hastings MG, Houlton BZ, Rockmann T, Sigman DM (2007) Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal Chem 79(2):599–607. doi: 10.1021/ac061022s CrossRefGoogle Scholar
  34. Kendall C (1998) Tracing nitrogen sources and cycling in catchments, Chapter 16. In: Kendall C, Mcdonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier Science B.V, Amsterdam, pp 519–576CrossRefGoogle Scholar
  35. Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems, chapter 12, In: Michener RH and Lajtha K (eds.) Stable isotopes in ecology and environmental science, 2nd edn, Blackwell Publishing, New York, pp. 375–449Google Scholar
  36. Keuper F, van Bodegom PM, Dorrepaal E et al (2012) A frozen feast: thawing permafrost increases plant-available nitrogenin subarctic peatlands. Glob Change Biol 18:1998–2007CrossRefGoogle Scholar
  37. Kokelj SV, Lewkowicz AG (1998) Long-term influence of active layer detachment sliding on permafrost slope hydrology, Hot Weather Creek, Ellesmere Island, Canada. In: Proceedings, seventh international conference on permafrost, yellowknife, June 2–27. Québec City Nordicana, Centre d’études nordiques, pp. 583–589.Google Scholar
  38. Lafrenière MJ, Lamoureux SF (2008) Seasonal dynamics of dissolved nitrogen exports from two High Arctic watersheds, Melville Island, Canada. Hydrol Res 39(4):323–335. doi: 10.2166/nh.2008.008 CrossRefGoogle Scholar
  39. Lafrenière MJ, Lamoureux SF (2013) Thermal perturbation and rainfall runoff have greater impact on seasonal solute loads than physical disturbance of the active layer. Permafrost Periglac 24(3):241–251CrossRefGoogle Scholar
  40. Lamoureux SF, Lafrenière MJ (2009) Fluvial impacts of extensive active layer detachments, Cape Bounty, Melville Island, Canada. Arct Antarct Alp Res 41(1):59–68CrossRefGoogle Scholar
  41. Levine MA, Whalen SC (2001) Nutrient limitation of phytoplankton production in Alaskan foothill lakes. Hydrobiologia 455:189–201CrossRefGoogle Scholar
  42. Lewkowicz AG, Harris C (2005) Frequency and magnitude of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada. Permafrost Periglac 16:115–130CrossRefGoogle Scholar
  43. Lipson DA, Monson RK (1998) Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events. Oecologia 113:406–414CrossRefGoogle Scholar
  44. Louiseize NL, Lafrenière MJ (submitted) Active layer slope disturbances affect magnitude and composition of dissolved nitrogen export from High Arctic headwater catchments. J Hydrol HYDROL17010Google Scholar
  45. McClelland JW, Stieglitz M, Pan F et al (2007) Recent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska. J Geophys Res 112:G04S60. doi: 10.1029/2006JG000371
  46. McNamara JP, Kane DL, Hobbie JE, Kling GW (2008) Hydrologic and biogeochemical controls on the spatial and temporal patterns of nitrogen and phosphorus in the Kuparuk River, arctic Alaska. Hydrol Process 22:3294–3309. doi: 10.1002/hyp.6920 CrossRefGoogle Scholar
  47. Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in six Arctic soils. Ecology 72(1):242–253CrossRefGoogle Scholar
  48. Nadelhoffer KJ, Shaver GR, Fry B et al (1996) 15 N natural abundances and N use by tundra plants. Oecologia 107:386–394CrossRefGoogle Scholar
  49. Nordin A, Schmidt KS, Shaver GR (2004) Nitrogen uptake by soil microbes and plants in relation to soil nitrogen supply. Ecology 85(4):955–962CrossRefGoogle Scholar
  50. Nowak A, Hodson A (2014) On the biogeochemical response of a glacierized High Arctic watershed to climate change: revealing patterns, processes and heterogeneity among micro-catchments. Hydrol Process. doi: 10.1002/hyp.10263 Google Scholar
  51. Paulter BG, Simpson AJ, McNally DJ et al (2010) Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ Sci Technol 44:4076–4082CrossRefGoogle Scholar
  52. Perakis SS (2002) Nutrient limitation, hydrology and watershed nitrogen loss. Hydrol Process 16:3507–3511CrossRefGoogle Scholar
  53. Petrone KC, Jones JB, Hinzman LD, Boone RD (2006) Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res 111:G02020. doi: 10.1029/2005JG000055 Google Scholar
  54. Shaver GR, Billings WD, Chapin FS et al (1992) Change and the carbon balance of arctic ecosystems. Bioscience 42:433–441CrossRefGoogle Scholar
  55. Sickman JO, Leydecker AL, Chang CCY et al (2003) Mechanisms underlying export of N from high-elevation catchments during seasonal transition. Biogeochemistry 64:1–24CrossRefGoogle Scholar
  56. Sigman DM, Casciotti KL, Andreani M et al (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in marine and fresh waters. Anal Chem 73:4145–4153CrossRefGoogle Scholar
  57. Snider DM, Spoelstra J, Schiff SL, Venkiteswaran JJ (2010) Stable oxygen isotope ratios of nitrate produced from nitrification: 18O-labeled water incubations of agricultural and temperate forest soils. Environ Sci Technol 44:5358–5364CrossRefGoogle Scholar
  58. Tye AM, Heaton THE (2007) Chemical and isotopic characteristics of weathering and nitrogen release in non-glacial drainage waters on arctic tundra. Geochim Cosmochim Acta 71:4188–4205CrossRefGoogle Scholar
  59. Vincent WF, Lemay M, Allard M (2013) Adapting to permafrost change: a science framework. EOS 94(42):373–375CrossRefGoogle Scholar
  60. Williams MW, Bales RC, Brown AD, Melack JM (1995) Fluxes and transformations of nitrogen in a high-elevation catchment, Sierra Nevada. Biogeochemistry 28:1–31CrossRefGoogle Scholar
  61. Woo MK, Young KL (2006) High Arctic wetlands: their occurrence, hydrological characteristics and sustainability. J Hydrol 320:432–450CrossRefGoogle Scholar
  62. Woods GC, Simpson MR, Paulter BG et al (2011) Evidence for the enhanced lability of dissolved organic matter following permafrost slope disturbance in the Canadian High Arctic. Geochim Cosmochim Acta 25:7226–7241Google Scholar
  63. Wynn PM, Hodson AJ, Heaton THE, Chenery SR (2007) Nitrate production beneath a High Arctic glacier, Svalbard. Chem Geol 244:88–102. doi: 10.1016/j.chemgeo.2007.06.008 CrossRefGoogle Scholar
  64. Yano Y, Shaver GR, Giblin AE et al (2010) Nitrogen dynamics in a small arctic watershed: retention and downhill movement of 15N. Ecol Monogr 80(2):331–351CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nicole L. Louiseize
    • 1
    Email author
  • Melissa J. Lafrenière
    • 1
  • Meredith G. Hastings
    • 2
  1. 1.Department of GeographyQueen’s UniversityKingstonCanada
  2. 2.Department of Geological SciencesBrown UniversityProvidenceUSA

Personalised recommendations