Biogeochemistry

, Volume 121, Issue 1, pp 189–207 | Cite as

Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways

  • Erika L. Gallo
  • Kathleen A. Lohse
  • Christopher M. Ferlin
  • Thomas Meixner
  • Paul D. Brooks
Article

Abstract

Rapid increases in human population and land transformation in arid and semi-arid regions are altering water, carbon (C) and nitrogen (N) cycles, yet little is known about how urban ephemeral stream channels in these regions affect biogeochemistry and trace gas fluxes. To address these knowledge gaps, we measured carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) before and after soil wetting in 16 ephemeral stream channels that vary in soil texture and organic matter in Tucson, AZ. Fluxes of CO2 and N2O immediately following wetting were among the highest ever published (up to 1,588 mg C m−2 h−1 and 3,121 μg N m−2 h−1). Mean post-wetting CO2 and N2O fluxes were significantly higher in the loam and sandy loam channels (286 and 194 mg C m−2 h−1; 168 and 187 μg N m−2 h−1) than in the sand channels (45 mg C m−2 h−1 and 7 μg N m−2 h−1). Factor analyses show that the effect of soil moisture, soil C and soil N on trace gas fluxes varied with soil texture. In the coarser sandy sites, trace gas fluxes were primarily controlled by soil moisture via physical displacement of soil gases and by organic soil C and N limitations on biotic processes. In the finer sandy loam sites trace gas fluxes and N-processing were primarily limited by soil moisture, soil organic C and soil N resources. In the loam sites, finer soil texture and higher soil organic C and N enhance soil moisture retention allowing for more biologically favorable antecedent conditions. Variable redox states appeared to develop in the finer textured soils resulting in wide ranging trace gas flux rates following wetting. These findings indicate that urban ephemeral channels are biogeochemical hotspots that can have a profound impact on urban C and N biogeochemical cycling pathways and subsequently alter the quality of localized water resources.

Keywords

Urban stream Trace gas flux Semi-arid Nitrogen Carbon Methane 

References

  1. Allaire SE, Dufour-L’Arrive´e C, Lafond JA, Lalancette R, Brodeur J (2008) Carbon dioxide emissions by urban turfgrass areas. Can J Soil Sci 88:529–532. doi:10.4141/CJSS07043 CrossRefGoogle Scholar
  2. Angel R (2010) Methane turnover in desert soils. Department of biology, Max-Planck Institute for Terrestrial Microbiology, Philipps-Universität Marburg, Marburg, p 191Google Scholar
  3. Austin AT, Ballare CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc Natl Acad Sci 107:4618–4622. doi:10.1073/pnas.0909396107 CrossRefGoogle Scholar
  4. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235. doi:10.1007/s00442-004-1519-1 CrossRefGoogle Scholar
  5. Baggs EM (2011) Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Curr Opin Environ Sustain 3:321–327. doi:10.1016/j.cosust.2011.08.011 CrossRefGoogle Scholar
  6. Baker LA, Hope D, Xu Y, Edmonds J, Lauver L (2001) Nitrogen balance for the central arizona–phoenix (CAP) ecosystem. Ecosystems 4:582–602. doi:10.1007/s10021-001-0031-2 CrossRefGoogle Scholar
  7. Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA (2005) Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86:298–307. doi:10.1890/03-0567 CrossRefGoogle Scholar
  8. Bijoor NS, Czimczik CI, Pataki DE, Billings SA (2008) Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawn. Glob Change Biol 14:2119–2131. doi:10.1111/j.1365-2486.2008.01617.x CrossRefGoogle Scholar
  9. Billings SA, Schaeffer SM, Evans RD (2002) Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2. Soil Biol Biochem 34:1777–1784. doi:10.1016/S0038-0717(02)00166-9 CrossRefGoogle Scholar
  10. Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10:9–31. doi:10.1007/BF01343734 CrossRefGoogle Scholar
  11. Blasch K, Ferré T, Vrugt J (2010) Environmental controls on drainage behavior of an ephemeral stream. Stoch Envirom Res Risk Assess 24:1077–1087. doi:10.1007/s00477-010-0398-8 CrossRefGoogle Scholar
  12. Bowling DR, Grote EE, Belnap J (2011) Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. J Geophys Res Biogeosci 116:G03028. doi:10.1029/2011JG001643 Google Scholar
  13. Brandt LA, Bohnet C, King JY (2009) Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J Geophys Res Biogeosci 114:G02004. doi:10.1029/2008JG000772 Google Scholar
  14. Bremer DJ (2006) Nitrous oxide fluxes in turfgrass. J Environ Qual 35:1678–1685. doi:10.2134/jeq2005.0387 Google Scholar
  15. Cable JM, Huxman TE (2004) Precipitation pulse size effects on Sonoran desert soil microbial crusts. Oecologia 141:317–324. doi:10.1007/s00442-003-1461-7 CrossRefGoogle Scholar
  16. Cable J, Ogle K, Williams D, Weltzin J, Huxman T (2008) Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran desert: implications for climate change. Ecosystems 11:961–979. doi:10.1007/s10021-008-9172-x CrossRefGoogle Scholar
  17. Carlson MA, Lohse KA, McIntosh JC, McLain JET (2011) Impacts of urbanization on groundwater quality and recharge in a semi-arid alluvial basin. J Hydrol 409:196–211. doi:10.1016/j.jhydrol.2011.08.020 CrossRefGoogle Scholar
  18. Conant RT, Dalla-Betta P, Klopatek CC, Klopatek JM (2004) Controls on soil respiration in semiarid soils. Soil Biol Biochem 36:945–951. doi:10.1016/j.soilbio.2004.02.013 CrossRefGoogle Scholar
  19. DeCoster J (1998) Overview of factor analysis. Retrieved June 8, 2009 from http://www.stat-help.com/notes.html
  20. Ezcurra E (2006) Global deserts outlook. UNEP, Division of Early Warning and Assessment, NairobiGoogle Scholar
  21. Fenn ME, Baron JS, Allen EB, Rueth HM, Nydick KR, Geiser L, Bowman WD, Sickman JO, Meixner T, Johnson DW (2003) Ecological effects of nitrogen deposition in the western United States. Bioscience 53:404–420. doi:10.1641/0006-3568(2003)053[0404%3AEEONDI]2.0.CO%3B2Google Scholar
  22. Firestone M, Davidson E, Andreae M, Schimel D (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae M, Schimel D (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, Chichester, pp 7–21Google Scholar
  23. Galbally IE, Kirstine WV, Meyer CP, Wang YP (2008) Soil-atmosphere trace gas exchange in semiarid and arid zones. J Environ Qual 37:599–607. doi:10.2134/jeq2006.0445 Google Scholar
  24. Gallo EL (2011) Patterns and controls of urban runoff quantity and quality in catchments of the semi-arid southwest. Department of Hydrology and Water Resources, University of Arizona, Tucson, p 240Google Scholar
  25. Gallo EL, Brooks P, Lohse KA, McLain JE (2012a) Temporal patterns and controls on runoff magnitude and solution chemistry of urban catchments in the semi-arid southwest. Hydrol Process. doi:10.1002/hyp.9199 Google Scholar
  26. Gallo EL, Lohse KA, Brooks P, McLain JE (2012b) Quantifying the effects of stream channels on storm water quality in a semi-arid urban environment. J Hydrol. doi:10.1016/j.jhydrol.2012.08.047 Google Scholar
  27. Gallo EL, Brooks PD, Lohse KA, McLain JET (2013) Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban catchments. J Hydrol 485:37–53. doi:10.1016/j.jhydrol.2012.11.054 CrossRefGoogle Scholar
  28. Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1 - physical and mineralogical properties. Soil Science Society of America Book Series 5, Madison, WI, pp 383–411Google Scholar
  29. Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol 25:90–98. doi:10.1016/j.tree.2009.07.016 CrossRefGoogle Scholar
  30. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu JG, Bai XM, Briggs JM (2008a) Global change and the ecology of cities. Science 319:756–760. doi:10.1126/science.1150195 CrossRefGoogle Scholar
  31. Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008b) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6:264–272. doi:10.1890/070147 CrossRefGoogle Scholar
  32. Groffman PM, Pouyat RV (2009) Methane uptake in urban forests and lawns. Environ Sci Technol 43:5229–5235. doi:10.1021/es803720h CrossRefGoogle Scholar
  33. Groffman P, Hardy J, Fisk M, Fahey T, Driscoll C (2009) Climate variation and soil carbon and nitrogen cycling processes in a northern hardwood forest. Ecosystems 12:927–943. doi:10.1007/s10021-009-9268-y CrossRefGoogle Scholar
  34. Grossman RB, Reinsch TG (2002) Bulk density and linear extensibility. In: Dane JH, Topp GC, Campbell GS (eds) Methods of soil analysis. Part 4 - physical methods. Soil Science Society of America, Madison, WI, pp 201–228Google Scholar
  35. Guido Z (2008) Understanding the southwestern monsoon. Southwest Climate Change NetworkGoogle Scholar
  36. Hall SJ, Huber D, Grimm NB (2008) Soil N2O and NO emissions from an arid, urban ecosystem. J Geophys Res Biogeosci 113:G01016. doi:10.1029/2007JG000523 Google Scholar
  37. Hall SJ, Ahmed B, Ortiz P, Davies R, Sponseller RA, Grimm NB (2009) Urbanization alters soil microbial functioning in the Sonoran desert. Ecosystems 12:654–671. doi:10.1007/s10021-009-9249-1 CrossRefGoogle Scholar
  38. Harms TK, Grimm NB (2008) Hot spots and hot moments of carbon and nitrogen dynamics in a semiarid riparian zone. J Geophys Res Biogeosci 113:1–14. doi:10.1029/2007JG000588 CrossRefGoogle Scholar
  39. Harms TK, Grimm NB (2012) Responses of trace gases to hydrologic pulses in desert floodplains. J Geophys Res Biogeosci 2005–2012:117. doi:10.1029/2011JG001775 Google Scholar
  40. Hart SC, Stark JM, Davidson EA, Firestone MK (1994) Nitrogen mineralization, immobilization, and nitrification. In: Weaver R, Angle S, Bottomley P, Bedzicek D, Smith S, Tabatabai A, Wollum A, Mickelson SH, Bigham JM (eds) Methods of soil analysis, part 2—microbiological and biochemical properties. Soil Science Society of America, Madison, pp 985–1018Google Scholar
  41. Houser P, Goodrich D, Syed K, U.S.D.A. ARS (2000) Runoff, precipitation and soil moisture at walnut gulch. In: Grayson R, Blöschl GN (eds) Spatial patterns in catchment hydrology: observations and modelling. Cambridge University Press, Cambridge, pp 125–157Google Scholar
  42. Hudson BD (1994) Soil organic matter and available water capacity. J Soil Water Conserv 49:189–194Google Scholar
  43. Hurkuck M, Althoff F, Jungkunst HF, Jugold A, Keppler F (2012) Release of methane from aerobic soil: an indication of a novel chemical natural process? Chemosphere 86:684–689. doi:10.1016/j.chemosphere.2011.11.024 CrossRefGoogle Scholar
  44. Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268. doi:10.1007/s00442-004-1682-4 Google Scholar
  45. Jarvis P, Rey A, Petsikos C, Wingate L, Rayment M, Pereira J, Banza J, David J, Miglietta F, Borghetti M, Manca G, Valentini R (2007) Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–940. doi:10.1093/treephys/27.7.929 CrossRefGoogle Scholar
  46. Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186. doi:10.1023/A:1024189029226 CrossRefGoogle Scholar
  47. Jugold A, Althoff F, Hurkuck M, Greule M, Lelieveld J, Keppler F (2012) Non-microbial methane formation in oxic soils. Biogeosci Discuss 9:11961–11987. doi:10.5194/bgd-9-11961-2012 CrossRefGoogle Scholar
  48. Kaiser HF (1958) The varimax criterion for analytic rotation in factor-analysis. Psychometrika 23:187–200. doi:10.1007/BF02289233 CrossRefGoogle Scholar
  49. Kaye JP, Burke IC, Mosier AR, Pablo Guerschman J (2004) Methane and nitrous oxide fluxes from urban soils to the atmosphere. Ecol Appl 14:975–981. doi:10.1890/03-5115 CrossRefGoogle Scholar
  50. Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199. doi:10.1016/j.tree.2005.12.006 CrossRefGoogle Scholar
  51. Kennedy J (2007) Changes in storm runoff with urbanization: the role of pervious areas in a semi-arid environment. Department of Hydrology and Water Resources, The University of Arizona, Tucson, p 111Google Scholar
  52. Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttilä AM, Röckmann T, Schnitzler J-P (2009) Methane formation in aerobic environments. Environ Chem 6:459–465. doi:10.1071/EN09137 CrossRefGoogle Scholar
  53. Kim DG, Vargas R, Bond-Lamberty B, Turetsky MR (2012) Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9:2459–2483. doi:10.5194/bg-9-2459-2012 CrossRefGoogle Scholar
  54. Kool DM, Dolfing J, Wrage N, Van Groenigen JW (2011) Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol Biochem 43:174–178. doi:10.1016/j.soilbio.2010.09.030 CrossRefGoogle Scholar
  55. Larson EK (2010) Water and nitrogen in designed ecosystems: biogeochemical and economic consequences. Biology, Arizona State University, Tempe, p 275Google Scholar
  56. Lehman A, O’Rouke N, Hatcher L, Stepanski EJ (2005) JMP for basic univariate and multivariate statistics a step-by-step guide. SAS Press, CaryGoogle Scholar
  57. Levick LR, Goodrich DC, Hernandez M, Fonseca J, Semmens DJ, Stromberg JC, Tluczek M, Leidy RA, Scianni M, Guertin DP (2008) The ecological and hydrological significance of ephemeral and intermittent streams in the arid and semi-arid American southwest. US Environmental Protection Agency, Office of Research and Development, Washington, DCGoogle Scholar
  58. Lewis DB, Grimm NB (2007) Hierarchical regulation of nitrogen export from urban catchments: interactions of storms and landscapes. Ecol Appl 17:2347–2364. doi:10.1890/06-0031.1 CrossRefGoogle Scholar
  59. Lohse KA, Hope D, Sponseller R, Allen JO, Grimm NB (2008) Atmospheric deposition of carbon and nutrients across an and metropolitan area. Sci Total Environ 402:95–105. doi:10.1016/j.scitotenv.2008.04.044 CrossRefGoogle Scholar
  60. Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004) A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141:269–281. doi:10.1007/s00442-004-1570-y CrossRefGoogle Scholar
  61. Lorenz K, Lal R (2009) Biogeochemical C and N cycles in urban soils. Environ Int 35:1–8. doi:10.1016/j.envint.2008.05.006 CrossRefGoogle Scholar
  62. Marañón-Jiménez S, Castro J, Kowalski A, Serrano-Ortiz P, Reverter B, Sánchez-Cañete E, Zamora R (2011) Post-fire soil respiration in relation to burnt wood management in a Mediterranean mountain ecosystem. For Ecol Manage 261:1436–1447. doi:10.1016/j.foreco.2011.01.030 CrossRefGoogle Scholar
  63. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Judson WH, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312. doi:10.1007/s10021-003-0161-9 CrossRefGoogle Scholar
  64. McCrackin ML, Harms TK, Grimm NB, Hall SJ, Kaye JP (2008) Responses of soil microorganisms to resource availability in urban, desert soils. Biogeochemistry 87:143–155. doi:10.1007/s10533-007-9173-4 CrossRefGoogle Scholar
  65. McLain JE, Martens DA (2005) Nitrous oxide flux from soil amino acid mineralization. Soil Biol Biochem 37:289–299. doi:10.1016/j.soilbio.2004.03.013 CrossRefGoogle Scholar
  66. McLain JET, Martens DA (2006) Moisture controls on trace gas fluxes in semiarid riparian soils. Anglais 70:367–377. doi:10.2136/sssaj 2005.0105Google Scholar
  67. McLain JET, Kepler TB, Ahmann DM (2002) Belowground factors mediating changes in methane consumption in a forest soil under elevated CO2. Glob Biogeochem Cycles 16:1050. doi:10.1029/2001GB001439 CrossRefGoogle Scholar
  68. McLain JET, Martens DA, McClaran MP (2008) Soil cycling of trace gases in response to mesquite management in a semiarid grassland. J Arid Environ 72:1654–1665. doi:10.1016/j.jaridenv.2008.03.003 CrossRefGoogle Scholar
  69. Mendez A, Goodrich DC, Osborn HB (2003) Rainfall point intensities in an air mass thunderstorm environment: walnut gulch, Arizona. JAWRA 39:611–621. doi:10.1111/j.1752-1688.2003.tb03679.x Google Scholar
  70. Navarro-García F, Casermeiro MÁ, Schimel JP (2012) When structure means conservation: effect of aggregate structure in controlling microbial responses to rewetting events. Soil Biol Biochem 44:1–8. doi:10.1016/j.soilbio.2011.09.019 CrossRefGoogle Scholar
  71. NREL (2008) United States concentrating solar power—direct normal. National Renewable Energy Laboratory, U. S. Department of Energy, Washington, DCGoogle Scholar
  72. Parkin TB (1987) Soil microsites as a source of denitrification variability. Anglais 51:1194–1199. doi:10.2136/sssaj1987.03615995005100050019x Google Scholar
  73. Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front Ecol Environ 9:27–36. doi:10.1890/090220 CrossRefGoogle Scholar
  74. Pietikåinen J, Pettersson M, Bååth E (2005) Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol 52:49–58. doi:10.1016/j.femsec.2004.10.002 CrossRefGoogle Scholar
  75. Pool DR (2005) Variations in climate and ephemeral channel recharge in southeastern Arizona, United States. Water Resour Res 41:W11403. doi:10.1029/2004WR003255 CrossRefGoogle Scholar
  76. Pouyat R, Groffman P, Yesilonis I, Hernandez L (2002) Soil carbon pools and fluxes in urban ecosystems. Environ Pollut 116(Supplement 1):S107–S118. doi:10.1016/S0269-7491(01)00263-9 CrossRefGoogle Scholar
  77. Raciti SM, Burgin AJ, Groffman PM, Lewis DN, Fahey TJ (2011) Denitrification in suburban lawn soils. J Environ Qual 40:1932–1940. doi:10.2134/jeq 2011.0107CrossRefGoogle Scholar
  78. Reynolds J, Kemp P, Ogle K, Fernández R (2004) Modifying the ‘pulse–reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141:194–210. doi:10.1007/s00442-004-1524-4 CrossRefGoogle Scholar
  79. Roach WJ, Grimm NB (2011) Denitrification mitigates N flux through the stream-floodplain complex of a desert city. Ecol Appl 21:2618–2636. doi:10.1890/10-1613.1 CrossRefGoogle Scholar
  80. Rutledge S, Campbell DI, Baldocchi D, Schipper LA (2010) Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Glob Change Biol 16:3065–3074. doi:10.1111/j.1365-2486.2009.02149.x Google Scholar
  81. Sarrantonio M, Doran JW, Liebig MA, Halvorson JJ (1996) On-farm assessment of soil quality and health. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA Spec. Publ. 49. SSSA, Madison, WI, pp 83–106Google Scholar
  82. Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569–1578. doi:10.2136/sssaj2005.0117 CrossRefGoogle Scholar
  83. Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–1036. doi:10.2136/sssaj1986.03615995005000040039x CrossRefGoogle Scholar
  84. Schwinning S, Sala O (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220. doi:10.1007/s00442-004-1520-8 Google Scholar
  85. Šimůnek J, van Genuchten MT, Šejna M (2005) The Hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, version 3.0, HYDRUS Software Series, 1st edn. Department of Environmental Sciences, University of California Riverside, RiversideGoogle Scholar
  86. Snyder KA, Williams DG (2000) Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agric For Meteorol 105:227–240. doi:10.1016/S0168-1923(00)00193-3 CrossRefGoogle Scholar
  87. Sponseller RA (2007) Precipitation pulses and soil CO2 flux in a Sonoran desert ecosystem. Glob Change Biol 13:426–436. doi:10.1111/j.1365-2486.2006.01307.x CrossRefGoogle Scholar
  88. Sponseller RA, Fisher SG (2008) The influence of drainage networks on patterns of soil respiration in a desert catchment. Ecology 89:1089–1100. doi:10.1890/06-1933.1 CrossRefGoogle Scholar
  89. Theobald DM, Travis WR, Drummond MA, Gordon ES (2013) The changing southwest. In: Garfin G, Jardine A, Merideth R, Black M, LeRoy S (eds) Assessment of climate change in the southwest United States: a report prepared for the national climate assessment, a report by the southwest climate alliance. Island Press, Washington, DC, pp 37–55CrossRefGoogle Scholar
  90. Townsend-Small A, Czimczik CI (2010) Carbon sequestration and greenhouse gas emissions in urban turf. Geophys Res Letters 37:L02707. doi:10.1029/2009GL041675
  91. Townsend-Small A, Pataki DE, Czimczik CI, Tyler SC (2011) Nitrous oxide emissions and isotopic composition in urban and agricultural systems in southern California. J Geophys Res Biogeosci 116:G01013. doi:10.1029/2010JG001494 CrossRefGoogle Scholar
  92. Unger S, Máguas C, Pereira JS, David TS, Werner C (2010) The influence of precipitation pulses on soil respiration—assessing the “Birch effect” by stable carbon isotopes. Soil Biol Biochem 42:1800–1810. doi:10.1016/j.soilbio.2010.06.019 CrossRefGoogle Scholar
  93. Unland HE, Houser PR, Shuttleworth WJ, Yang Z-L (1996) Surface flux measurement and modeling at a semi-arid Sonoran desert site. Agric For Meteorol 82:119–153. doi:10.1016/0168-1923(96)02330-1 CrossRefGoogle Scholar
  94. Zar J (1999) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar
  95. Zhang Y, Wei H, Nearing MA (2011) Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona. Hydrol Earth Syst Sci Discuss 8:6227–6256. doi:10.5194/hessd-8-6227-2011 CrossRefGoogle Scholar
  96. Zhu W-X, Dillard N, Grimm N (2005) Urban nitrogen biogeochemistry: status and processes in green retention basins. Biogeochemistry 71:177–196. doi:10.1007/s10533-005-0683-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Erika L. Gallo
    • 1
    • 3
  • Kathleen A. Lohse
    • 2
    • 3
  • Christopher M. Ferlin
    • 4
  • Thomas Meixner
    • 1
  • Paul D. Brooks
    • 1
  1. 1.Department of Hydrology and Water ResourcesUniversity of ArizonaTucsonUSA
  2. 2.School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonUSA
  3. 3.Department of Biological SciencesIdaho State UniversityPocatelloUSA
  4. 4.Department of Soil, Water and Environmental ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations