, Volume 119, Issue 1–3, pp 35–43 | Cite as

A Michaelis–Menten type equation for describing methylmercury dependence on inorganic mercury in aquatic sediments

  • Daniel Cossa
  • Cédric Garnier
  • Roselyne Buscail
  • Francoise Elbaz-Poulichet
  • Nevenka Mikac
  • Nathalie Patel-Sorrentino
  • Erwan Tessier
  • Sylvain Rigaud
  • Véronique Lenoble
  • Charles Gobeil


Methylation of mercury (Hg) is the crucial process that controls Hg biomagnification along the aquatic food chains. Aquatic sediments are of particular interest because they constitute an essential reservoir where inorganic divalent Hg (HgII) is methylated. Methylmercury (MeHg) concentrations in sediments mainly result from the balance between methylation and demethylation reactions, two opposite natural processes primarily mediated by aquatic microorganisms. Thus, Hg availability and the activity of methylating microbial communities control the MeHg abundance in sediments. Consistently, some studies have reported a significant positive correlation between MeHg and HgII or total Hg (HgT), taken as a proxy for HgII, in aquatic sediments using enzyme-catalyzed methylation/demethylation mechanisms. By compiling 1,442 published and unpublished HgT–MeHg couples from lacustrine, riverine, estuarine and marine sediments covering various environmental conditions, from deep pristine abyssal to heavily contaminated riverine sediments, we show that a Michaelis–Menten type relationship is an appropriate model to relate the two parameters: MeHg = aHgT/(K m  + HgT), with a = 0.277 ± 0.011 and K m  = 188 ± 15 (R 2 = 0.70, p < 0.001). From K m variations, which depend on the various encountered environmental conditions, it appears that MeHg formation and accumulation are favoured in marine sediments compared to freshwater ones, and under oxic/suboxic conditions compared to anoxic ones, with redox potential and organic matter lability being the governing factors.


Mercury Methylmercury Aquatic sediment Methylation Demethylation 



This research beneficiated from funding from the EXTREMA (ANR-06-VULN-005) and the HERMES-HERMIONE (GOCE-CT-2005-511234) projects funded by the Agence Nationale de la Recherche and the European Commission, respectively; from the CARTOCHIM project (funded by “Région PACA”, “Toulon-Provence-Méditerranée (TPM)” and “l’Agence de l’Eau Rhône-Méditerranée et Corse”); was a part of the “MerMex-WP3-C3A” and international “IMBER” project. This publication reflects only the views of the authors, and the EC is not liable for any use that may be made of the information contained herein.

Supplementary material

10533_2013_9924_MOESM1_ESM.pdf (212 kb)
Supplementary material 1 (PDF 213 kb)


  1. Abi-Ghanem C, Nakhlé K, Khalaf G, Cossa D (2011) Mercury distribution and methylmercury mobility in the sediments of three sites on the Lebanese Coast, Eastern Mediterranean. Arch Environ Contam Toxicol 60:394–405CrossRefGoogle Scholar
  2. Acha D, Hintelmann H, Pabon CA (2012) Sulfate-reducing bacteria and mercury methylation in the water column of the lake 658 of the experimental lake area. GeoMicrobiol J 29:667–674CrossRefGoogle Scholar
  3. Arnost C, Holmer M (2003) Carbon cycling in a continental margin sediment: contrasts between organic matter characteristics and mineralization rates and pathways. Estuar Coast Shelf Sci 58:197–208CrossRefGoogle Scholar
  4. Baldi F (1997) Microbial transformation of mercury species and their importance in the biogeochemical cycle of mercury. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 34., Mercury and its effects on environment and biologyMarcel Dekker, NY, pp 213–257Google Scholar
  5. Barkay T, Kroer N, Poulain AJ (2011) Some like it cold: microbial transformations of mercury in polar regions. Polar Res 30:15469. doi: 10.3402/polar.v30i0.15469 CrossRefGoogle Scholar
  6. Begley TP, Walts AE, Walsh CT (1986) Mechanistic studies of a protonolytic organomercurial cleaving enzyme: bacterial organomercurial lyase. Biochemistry 25:7192–7200CrossRefGoogle Scholar
  7. Benoit JM, Gilmour CC, Mason RP, Riedel GS, Riedel GF (1998) Behavior of mercury in the Patuxent river estuary. Biogeochemistry 40:249–265CrossRefGoogle Scholar
  8. Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33:951–957CrossRefGoogle Scholar
  9. Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Chai Y, Braids OC (eds) Biogeochemistry of environmentally important trace elements, vol 835., ACS Symposium SeriesAmerican Chemical Society, Washington, DCGoogle Scholar
  10. Brent RN, Kain DG (2011) Development of an Empirical nonlinear model for mercury bioaccumulation in the South and South Fork Shenandoah Rivers of Virginia. Arch Environ Contam Toxicol 61:614–623CrossRefGoogle Scholar
  11. Buscail R, Germain C (1997) Present-day organic matter sedimentation on the NW Mediterranean margin: importance of off-shelf export. Limnol Oceanogr 42:217–229CrossRefGoogle Scholar
  12. Choi SC, Chase T, Bartha R (1994) Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS. Appl Environ Microb 60:4072–4077Google Scholar
  13. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662CrossRefGoogle Scholar
  14. Compeau GC, Bartha R (1984) Methylation and demethylation of mercury under controlled redox, pH and salinity conditions. Appl Environ Microbiol 48:1203–1207Google Scholar
  15. Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502Google Scholar
  16. Dahlberg C, Hermansson M (1995) Abundance of Tn3, Tn21, and Tn501 transposase (tnpA) sequences in bacterial community DNA from marine environments. Appl Environ Microbiol 61:3051–3056Google Scholar
  17. Drott A, Lambertsson L, Björn E, Skyllberg U (2007) Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environ Sci Technol 41:2270–2276CrossRefGoogle Scholar
  18. Drott A, Lambertsson L, Björn E, Skyllberg U (2008) Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments? Environ Sci Technol 42:153–158CrossRefGoogle Scholar
  19. Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72:457–464CrossRefGoogle Scholar
  20. Frohne T, Rinklebe J, Langer U, Du Laing G, Mothes S, Wennrich R (2012) Biogeochemical factors affecting mercury methylation rate in two contaminated floodplain soils. Biogeosciences 9:493–507CrossRefGoogle Scholar
  21. Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287CrossRefGoogle Scholar
  22. Gilmour CC, Riedel GS, Ederington MC, Bell JT, Benoit JM, Gill GA, Stordal MC (1998) Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochem 40:327–345CrossRefGoogle Scholar
  23. Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77:3938–3951CrossRefGoogle Scholar
  24. Graham AM, Aiken GR, Gilmour CC (2012) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol 46:2715–2723CrossRefGoogle Scholar
  25. Guedron S, Huguet L, Vignati DAL, Liu B, Gimbert F, Ferrari BJD, Zonta R, Dominik J (2012) Tidal cycling of mercury and methylmercury between sediments and water column in the Venice Lagoon (Italy). Mar Chem 130:1–11CrossRefGoogle Scholar
  26. Guimarães JR, Mauro JB, Meili M, Sundbom M, Haglund AL, Coelho-Souza SA, Hylander LD (2006) Simultaneous radioassays of bacterial production and mercury methylation in the periphyton of a tropical and a temperate wetland. J Environ Manage 81:95–100CrossRefGoogle Scholar
  27. Hamelin S, Amyot M, Barkay T, Wang Y, Planas D (2011) Methanogens: principal methylators of mercury in lake periphyton. Environ Sci Technol 45:7693–7700CrossRefGoogle Scholar
  28. Hammerschmidt CR, Fitzgerald WF (2004) Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ Sci Technol 38:1487–1495CrossRefGoogle Scholar
  29. Hammerschmidt CR, Fitzgerald WF (2006) Methylmercury cycling in sediments on the continental shelf of southern New England. Geochim Cosmochim Acta 70:918–930CrossRefGoogle Scholar
  30. Hammerschmidt CR, Fitzgerald WF, Balcom PH, Visscher PT (2008) Organic matter and sulfide inhibit methylmercury production in sediments of New York/New Jersey Harbor. Mar Chem 109:165–182CrossRefGoogle Scholar
  31. Han S, Obraztsova A, Pretto P, Choe KY, Gieskes J, Deheyn DD, Tebo BM (2007) Biogeochemistry factors affecting mercury methylation in sediments of the Venice Lagoon, Italy. Environ Toxicol Chem 26:655–663CrossRefGoogle Scholar
  32. Han S, Narasingarao P, Obraztsova A, Gieskes J, Hartmann AC, Tebo BM, Allen E, Deheyne DD (2010) Mercury speciation in marine sediments under sulfate-limited conditions. Environ Sci Technol 44:3752–3757CrossRefGoogle Scholar
  33. Hines ME, Horvat M, Faganeli J, Bonzongo JCJ, Barkay T, Majorf EB, Scott K, Bailey EA, Warwick JJ, Lyons WB (2000) Mercury biogeochemistry in the Idrija River, Slovenia, from above the Mine into the Gulf of Trieste. Environ Res 83:129–139CrossRefGoogle Scholar
  34. Hintelmann H, Wilken R-D (1995) Levels of total mercury and methylmercury compounds in sediments of the polluted Elbe River: influence of seasonally and spatially varying environmental factors. Sci Total Environ 166:1–10CrossRefGoogle Scholar
  35. Hollweg TA, Gilmour CC, Mason RP (2010) Mercury and methylmercury cycling in sediments of the mid-Atlantic continental shelf and slope. Limnol Oceanogr 55:2703–2722Google Scholar
  36. Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ. Sci. Technol. doi: 10.1021/es304370g Google Scholar
  37. Jensen S, Jernelöv A (1969) Biological methylation of mercury in aquatic organisms. Nature 223:753–754CrossRefGoogle Scholar
  38. Jonsson S, Skyllberg U, Nilsson MB, Westlund PO, Shchukarev A (2012) Mercury methylation rates for geochemically relevant HgII species in sediments. Environ Sci Technol 2012:11653–11659CrossRefGoogle Scholar
  39. Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl and Environ Microbiol 72:7919–7921CrossRefGoogle Scholar
  40. King JK, Saunders FM, Lee RF, Jahnke RA (1999) Coupling mercury methylation rates to sulfate reduction rates in marine sediments. Environ Toxicol Chem 18:362–1369CrossRefGoogle Scholar
  41. Kwokal Z, Franciskovic-Bilinski S, Bilinski H, Branica M (2002) A comparison of anthropogenic mercury pollution in Kaštela Bay (Croatia) with pristine estuaries in Ore (Sweden) and Krka (Croatia). Mar Poll Bull 44:1152–1169CrossRefGoogle Scholar
  42. Marvin-DiPasquale MC, Oremland RS (1998) Bacterial methylmercury degradation in Florida Everglad peat sediment. Environ Sci Technol 32:2556–2563CrossRefGoogle Scholar
  43. Marvin-DiPasquale MC, Agee J, McGowan C, Oremland RS, Thomas M, Krabbenhoft DP, Gilmour CC (2000) Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environ Sci Technol 34:4908–4916CrossRefGoogle Scholar
  44. Marvin-DiPasquale MC, Lutz MA, Brigham ME, Krabbenhoft DP, Aiken GR, Orem WR, Hall BD (2009) Mercury cycling in stream ecosystems-2. Benthic methylmercury production and bed sediment pore water partitioning. Environ Sci Technol 43:2726–2732CrossRefGoogle Scholar
  45. Mason RP (2012) The methylation of metals and metalloids in aquatic systems (Chap. 11). In: Dricu A (ed) Methylation—from DNA, RNA and histones to diseases and treatment. INTECH Open Science, Rijeka, pp 271–301. ISBN 978-953-51-0881-8Google Scholar
  46. Mason RP, Lawrence AL (1999) Concentration, distribution, and bioavailability of mercury and methylmercury in sediments of the Baltimore harbour and Chesapeake bay, Maryland, USA. Environ Toxicol Chem 18:2438–2447Google Scholar
  47. Mason RP, Lawson NM, Lawrence AL, Leaner JJ, Lee JG, Sheu GR (1999) Mercury in Chesapeake Bay. Mar Chem 65:77–86CrossRefGoogle Scholar
  48. Mathews TJ, Southworth G, Peterson MJ, Roy WK, Ketelle RH, Valentine C, Gregory S (2013) Decreasing aqueous mercury concentrations to meet the water quality criterion in fish: examining the water–fish relationship in two point-source contaminated streams. Sci Total Environ 443:836–848CrossRefGoogle Scholar
  49. Mikac N, Niessen S, Ouddane B, Wartel M (1999) Speciation of mercury in sediments of the Seine estuary (France). Appl Org Chem 13:715–725CrossRefGoogle Scholar
  50. Mikac N, Foucher D, Clarisse O, Niessen S, Lojen S, Logar M, Horvat M, Leermarkers M (2004) Relationship between mercury species and solid sulfides in aquatic sediments. RMZ Mater Geoenviron 51:1214–1217Google Scholar
  51. Muhaya B, Leermakers M, Baeyens W (1997) Total mercury and methylmercury in sediments and in the polychaete Nereis diversicolor at Groot Buitenschoor (Scheldt estuary, Belgium). Water Air Soil Pollut 94:109–123Google Scholar
  52. Muresan B, Cossa D, Jézéquel D, Prévot F, Kerbellec S (2007) The biogeochemistry of mercury at the sediment water interface in the Thau lagoon. 1. Partition and speciation. Estaur Coast Shelf Sci 72:472–484CrossRefGoogle Scholar
  53. Oremland RS, Culbertson CW, Winfrey MR (1991) Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation. Appl Environ Microbiol 57:130–137Google Scholar
  54. Pak KR, Bartha R (1998) Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methanogens. Appl Environ Microbiol 64:1987–1990Google Scholar
  55. Parks JM, Johs A, Podar M, Bridou R, Hurt RA, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science. doi: 10.1126/science.1230667 Google Scholar
  56. Pearson AJ, Bruce KD, Osborn AM, Ritchie DA, Strike P (1996) Distribution of class II transposase and resolvase genes in soil bacteria and their association with mer genes. Appl Environ Microbiol 62:2961–2965Google Scholar
  57. Ranchou-Peyruse M, Monperrus MR, Bridou R, Duran R, Amouroux D, Salvado JC, Guyoneaud R (2009) Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulfate-reducers: implications for environmental studies. GeoMicrobiol J 26:1–8CrossRefGoogle Scholar
  58. Ravichandran M (2004) Interactions between mercury and dissolved organic matter—a review. Chemosphere 55:319–331CrossRefGoogle Scholar
  59. Rigaud S, Radakovitch O, Couture R-M, Deflandre B, Cossa D, Garnier C, Garnier J-M (2013) Mobility and fluxes of trace elements and nutrients at the sediment-water interface of a lagoon under contrasting water-column oxygenation. Appl Geochem 31:35–51CrossRefGoogle Scholar
  60. Schaefer JK, Morel FM (2009) High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci 2:123–126CrossRefGoogle Scholar
  61. Schaefer JK, Letowski J, Barkay T (2002) mer-mediated resistance and volatilization of Hg(II) under anaerobic conditions. Geomicrobiol J 19:87–102CrossRefGoogle Scholar
  62. Schaefer JK, Yagi J, Reinfelder JR, Cardona T, Ellickson KM, Tel-Or S, Barkay T (2004) Role of the bacterial organomercury lyase (MerB) in controlling methylmercury accumulation in mercury-contaminated natural waters. Environ Sci Technol 38:4304–4311CrossRefGoogle Scholar
  63. Schartup AT, Mason RP, Balcom PH, Hollweg TA, Chen CY (2013) Methylmercury production in estuarine sediments: role of organic matter. Environ Sci Technol 47:695–700CrossRefGoogle Scholar
  64. Segade SR, Dias T, Ramalhosa E (2010) Mercury methylation versus demethylation: main processes involved (Chap. 7). In: Clampet AP (ed) Methylmercury: Formation, Sources and Health Effects. Nova Science Publishers, New York, p 32. ISBN 978-1-61761-838-3Google Scholar
  65. Sparling R (2009) Biogeochemistry: mercury methylation made easy. Nat Geosci 2:92–93CrossRefGoogle Scholar
  66. Sunderland EM, Gobas FAPC, Branfireun BA, Heyes A (2006) Environmental controls on the speciation and distribution of mercury in coastal sediments. Mar Chem 102:11–123CrossRefGoogle Scholar
  67. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293CrossRefGoogle Scholar
  68. Vonk JW, Sijpesteijn AK (1973) Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi. Antonie Van Leeuwenhoek 39:505–513CrossRefGoogle Scholar
  69. Yu RQ, Adatto I, Montesdeoca MR, Driscoll CT, Hines ME, Barkay T (2010) Mercury methylation in sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland. FEMS Microbiol Ecol 74:655–668CrossRefGoogle Scholar
  70. Yu RQ, Flanders JR, Mack EE, Turner R, Mirza B, Barkay T (2012) Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Environ Sci Technol 46:2684–2691CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Daniel Cossa
    • 1
    • 2
  • Cédric Garnier
    • 3
  • Roselyne Buscail
    • 4
  • Francoise Elbaz-Poulichet
    • 5
  • Nevenka Mikac
    • 6
  • Nathalie Patel-Sorrentino
    • 3
  • Erwan Tessier
    • 3
  • Sylvain Rigaud
    • 7
  • Véronique Lenoble
    • 3
  • Charles Gobeil
    • 8
  1. 1.IFREMERLa Seyne-sur-MerFrance
  2. 2.ISTerreUniversité J. FourierGrenobleFrance
  3. 3.PROTEEUniversité de ToulonLa GardeFrance
  4. 4.CEFREM-CNRS-UMR 5110Université de PerpignanPerpignanFrance
  5. 5.Laboratoire Hydrosciences, UMR CNRSUniversités Montpellier I & IIMontpellier Cedex 5France
  6. 6.Center for Marine and Environmental ResearchRuđer Bošković InstituteZagrebCroatia
  7. 7.CeregeAix-Marseille UniversitéAix-en-Provence Cedex 04France
  8. 8.INRS-ETEUniversité du QuébecQuebecCanada

Personalised recommendations