Biogeochemistry

, Volume 118, Issue 1–3, pp 141–157 | Cite as

Biodiversity effects on nitrate concentrations in soil solution: a Bayesian model

  • Sophia Leimer
  • Christian Wirth
  • Yvonne Oelmann
  • Wolfgang Wilcke
Article

Abstract

Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0–30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1–60) and functional group composition (1–4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash–Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.

Keywords

Nitrate in soil solution Biodiversity The Jena Experiment Bayesian model 

References

  1. Cable JM, Ogle K, Lucas RW, Huxman TE, Loik ME, Smith SD, Tissue DT, Ewers BE, Pendall E, Welker JM, Charlet TN, Cleary M, Griffith A, Nowak RS, Rogers M, Steltzer H, Sullivan PF, van Gestel NC (2011) The temperature responses of soil respiration in deserts: a seven desert synthesis. Biogeochemistry 103:71–90. doi:10.1007/s10533-010-9448-z CrossRefGoogle Scholar
  2. Christian DG, Riche AB (1998) Nitrate leaching losses under Miscanthus grass planted on a silty clay loam soil. Soil Use Manag 14:131–135CrossRefGoogle Scholar
  3. Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14. doi:10.1111/j.1461-0248.2004.00702.x CrossRefGoogle Scholar
  4. Corre MD, Schnabel RR, Stout WL (2002) Spatial and seasonal variation of gross nitrogen transformations and microbial biomass in a northeastern US grassland. Soil Biol Biochem 34:445–457. doi:10.1016/S0038-0717(01)00198-5 CrossRefGoogle Scholar
  5. Dubach M, Russelle MP (1994) Forage legume roots and nodules and their role in nitrogen transfer. Agron J 86:259–266CrossRefGoogle Scholar
  6. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5th edn. Ulmer, StuttgartGoogle Scholar
  7. Gelman A, Meng XL, Stern H (1996) Posterior predictive assessment of model fitness via realized discrepancies. Stat Sin 6:733–807Google Scholar
  8. Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis, 2nd edn. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  9. Gu C, Riley WJ (2010) Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling—a modeling analysis. J Contam Hydrol 112:141–154. doi:10.1016/j.jconhyd.2009.12.003 CrossRefGoogle Scholar
  10. Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68(1):121–149. doi:10.2307/2657146 CrossRefGoogle Scholar
  11. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35. doi:10.1890/04-0922 CrossRefGoogle Scholar
  12. Janssen PHM, Heuberger PSC (1995) Calibration of process-oriented models. Ecol Model 83:55–66. doi:10.1016/0304-3800(95)00084-9 CrossRefGoogle Scholar
  13. Jonard M, Legout A, Nicolas M, Dambrine E, Nys C, Ulrich E, van der Perre R, Ponette Q (2012) Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: a long-term integrated perspective. Glob Change Biol 18:711–725. doi:10.1111/j.1365-2486.2011.02550.x CrossRefGoogle Scholar
  14. Kéry M (2010) Introduction to WinBUGS for ecologists: a Bayesian approach to regression, ANOVA, mixed models and related analyses, 1st edn. Academic Press, BurlingtonGoogle Scholar
  15. Kluge G, Müller-Westermeier G (2000) Das Klima ausgewählter Orte der Bundesrepublik Deutschland: Jena, Berichte des Deutschen Wetterdienstes, vol 213. Deutscher Wetterdienst, Offenbach am Main, GermanyGoogle Scholar
  16. Kreutziger Y (2006) Rückkopplungseffekte verschieden diverser Grünlandökosysteme auf die Komponenten des Bodenwasserhaushalts an einem Auestandort der Saale. Dissertation, Friedrich Schiller University Jena, JenaGoogle Scholar
  17. Kristensen HL, Gundersen P, Callesen I, Reinds GJ (2004) Throughfall nitrogen deposition has different impacts on soil solution nitrate concentration in European coniferous and deciduous forests. Ecosystems 7:180–192. doi:10.1007/s10021-003-0216-y CrossRefGoogle Scholar
  18. Li C, Farahbakhshazad N, Jaynes DB, Dinnes DL, Salas W, McLaughlin D (2006) Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecol Model 196:116–130. doi:10.1016/j.ecolmodel.2006.02.007 CrossRefGoogle Scholar
  19. Li Y, White R, Chen D, Zhang J, Li B, Zhang Y, Huang Y, Edis R (2007) A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecol Model 203:395–423. doi:10.1016/j.ecolmodel.2006.12.011 CrossRefGoogle Scholar
  20. Loreau M (1998) Biodiversity and ecosystem functioning: a mechanistic model. Proc Natl Acad Sci USA 95:5632–5636. doi:10.1073/pnas.95.10.5632 CrossRefGoogle Scholar
  21. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi:10.1126/science.1064088 CrossRefGoogle Scholar
  22. Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions. Stat Med 28:3049–3067. doi:10.1002/sim.3680 CrossRefGoogle Scholar
  23. Majumdar A, Kaye J, Gries C, Hope D, Grimm N (2008) Hierarchical spatial modeling and prediction of multiple soil nutrients and carbon concentrations. Commun Stat Simul Comput 37:434–453. doi:10.1080/03610910701792588 CrossRefGoogle Scholar
  24. Marquard E, Weigelt A, Temperton VM, Roscher C, Schumacher J, Buchmann N, Fischer M, Weisser WW, Schmid B (2009) Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90:3290–3302. doi:10.1890/09-0069.1 CrossRefGoogle Scholar
  25. Meng XL (1994) Posterior predictive p-values. Ann Stat 22:1142–1160. doi:10.1214/aos/1176325622 CrossRefGoogle Scholar
  26. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part 1—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  27. Niklaus PA, Kandeler E, Leadley PW, Schmid B, Tscherko D, Körner C (2001) A link between plant diversity, elevated CO2 and soil nitrate. Oecologia 127:540–548. doi:10.1007/s004420000612 CrossRefGoogle Scholar
  28. Ntzoufras I (2009) Bayesian modeling using WinBUGS. Wiley, HobokenCrossRefGoogle Scholar
  29. Oelmann Y, Kreutziger Y, Bol R, Wilcke W (2007a) Nitrate leaching in soil: tracing the NO3 sources with the help of stable N and O isotopes. Soil Biol Biochem 39:3024–3033. doi:10.1016/j.soilbio.2007.05.036 CrossRefGoogle Scholar
  30. Oelmann Y, Kreutziger Y, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze ED, Weisser WW, Wilcke W (2007b) Nitrogen and phosphorus budgets in experimental grasslands of variable diversity. J Environ Qual 36:396–407. doi:10.2134/jeq2006.0217 CrossRefGoogle Scholar
  31. Oelmann Y, Wilcke W, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze ED, Weisser WW (2007c) Soil and plant nitrogen pools as related to plant diversity in an experimental grassland. Soil Sci Soc Am J 71:720–729. doi:10.2136/sssaj2006.0205 CrossRefGoogle Scholar
  32. Oleson JJ, Hope D, Gries C, Kaye J (2006) Estimating soil properties in heterogeneous land-use patches: a Bayesian approach. Environmetrics 17:517–525. doi:10.1002/env.789 CrossRefGoogle Scholar
  33. Pedersen A, Petersen B, Eriksen J, Hansen S, Jensen L (2007) A model simulation analysis of soil nitrate concentrations—does soil organic matter pool structure or catch crop growth parameters matter most? Ecol Model 205:209–220. doi:10.1016/j.ecolmodel.2007.02.016 CrossRefGoogle Scholar
  34. Proulx R, Wirth C, Voigt W, Weigelt A, Roscher C, Attinger S, Baade J, Barnard RL, Buchmann N, Buscot F, Eisenhauer N, Fischer M, Gleixner G, Halle S, Hildebrandt A, Kowalski E, Kuu A, Lange M, Milcu A, Niklaus PA, Oelmann Y, Rosenkranz S, Sabais A, Scherber C, Scherer-Lorenzen M, Scheu S, Schulze ED, Schumacher J, Schwichtenberg G, Soussana JF, Temperton VM, Weisser WW, Wilcke W, Schmid B (2010) Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands. PLOS ONE 5:e13382. doi:10.1371/journal.pone.0013382 CrossRefGoogle Scholar
  35. R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, url: http://www.R-project.org
  36. Riley WJ, Matson PA (2000) NLOSS: a mechanistic model of denitrified N2O and N2 evolution from soil. Soil Sci 165:237–249. doi:10.1097/00010694-200003000-00006 CrossRefGoogle Scholar
  37. Roscher C, Schumacher J, Baade J, Wilcke W, Gleixner G, Weisser WW (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121. doi:10.1078/1439-1791-00216 CrossRefGoogle Scholar
  38. Rosenkranz S, Wilcke W, Eisenhauer N, Oelmann Y (2012) Net ammonification as influenced by plant diversity in experimental grassland. Soil Biol Biochem 48:78–87. doi:10.1016/j.soilbio.2012.01.008 CrossRefGoogle Scholar
  39. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770 CrossRefGoogle Scholar
  40. Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze ED (2003) The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84(6):1539–1552. doi:10.1890/0012-9658(2003)084[1539:TROPDA]2.0.CO;2Google Scholar
  41. Schilling KE, Spooner J (2006) Effects of watershed-scale land use change on stream nitrate concentrations. J Environ Qual 35:2132–2145. doi:10.2134/jeq2006.0157 CrossRefGoogle Scholar
  42. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85(3):591–602. doi:10.1890/03-8002 CrossRefGoogle Scholar
  43. Spehn EM, Joshi J, Schmid B, Diemer M, Korner C (2000) Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Funct Ecol 14(3):326–337CrossRefGoogle Scholar
  44. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B Stat Methodol 64:583–639. doi:10.1111/1467-9868.00353 CrossRefGoogle Scholar
  45. Steinbeiss S, Beßler H, Engels C, Temperton VM, Buchmann N, Roscher C, Kreutziger Y, Baade J, Habekost M, Gleixner G (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Change Biol 14:2937–2949. doi:10.1111/j.1365-2486.2008.01697.x CrossRefGoogle Scholar
  46. Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd edn. Wiley, New YorkGoogle Scholar
  47. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720. doi:10.1038/379718a0 CrossRefGoogle Scholar
  48. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302. doi:10.1126/science.277.5330.1300 CrossRefGoogle Scholar
  49. van der Laan M, Stirzaker RJ, Annandale JG, Bristow KL, du Preez CC (2010) Monitoring and modelling draining and resident soil water nitrate concentrations to estimate leaching losses. Agric Water Manag 97:1779–1786. doi:10.1016/j.agwat.2010.06.012 CrossRefGoogle Scholar
  50. van Schöll L, van Dam AM, Leffelaar P (1997) Mineralisation of nitrogen from an incorporated catch crop at low temperatures: experiment and simulation. Plant Soil 188:211–219. doi:10.1023/A:1004255102840 CrossRefGoogle Scholar
  51. Weigelt A, Marquard E, Temperton VM, Roscher C, Scherber C, Mwangi PN, von Felten S, Buchmann N, Schmid B, Schulze ED, Weisser WW (2010) The Jena Experiment: six years of data from a grassland biodiversity experiment. Ecol Freshw Fish 91:929CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sophia Leimer
    • 1
  • Christian Wirth
    • 2
  • Yvonne Oelmann
    • 3
  • Wolfgang Wilcke
    • 1
  1. 1.Geographic InstituteUniversity of BernBernSwitzerland
  2. 2.Institute of Biology, Special Botany and Functional Biodiversity ResearchUniversity of LeipzigLeipzigGermany
  3. 3.GeoecologyUniversity of TübingenTübingenGermany

Personalised recommendations