Advertisement

Biogeochemistry

, Volume 119, Issue 1–3, pp 25–33 | Cite as

Biogenic silica recycling in sea ice inferred from Si-isotopes: constraints from Arctic winter first-year sea ice

  • François FripiatEmail author
  • Jean-Louis Tison
  • Luc André
  • Dirk Notz
  • Bruno Delille
Article

Abstract

We report silicon isotopic composition (δ30Si vs. NBS28) in Arctic sea ice, based on sampling of silicic acid from both brine and seawater in a small Greenlandic bay in March 2010. Our measurements show that just before the productive period, δ30Si of sea-ice brine similar to δ30Si of the underlying seawater. Hence, there is no Si isotopic fractionation during sea-ice growth by physical processes such as brine convection. This finding brings credit and support to the conclusions of previous work on the impact of biogenic processes on sea ice δ30Si: any δ30Si change results from a combination of biogenic silica production and dissolution. We use this insight to interpret data from an earlier study of sea-ice δ30Si in Antarctic pack ice that show a large accumulation of biogenic silica. Based on these data, we estimate a significant contribution of biogenic silica dissolution (D) to production (P), with a D:P ratio between 0.4 and 0.9. This finding has significant implications for the understanding and parameterization of the sea ice Si-biogeochemical cycle, i.e. previous studies assumed little or no biogenic silica dissolution in sea ice.

Keywords

Sea ice Nutrient cycles Silicon Biogenic silica production Biogenic silica dissolution 

Notes

Acknowledgments

Our warm thanks to the owner of the sailing vessel ‘SS Dagmar Aaen’, Arved Fuchs, and to Rémy Tokouda and Kai Maibaum for their support in the field. We are also grateful to Ivan Petrov and Nadine Mattielli for the management of the MC-ICP-MS laboratory at ULB; to L. Monin, N. Dahkani, J. Navez (RMCA) and S. El Amri (ULB) for their help in sample processing. This work was conducted within BELCANTO III-BIGSOUTH networks (contracts SD/CA/03A and SD/CA/05A of SPSDIII, Support Plan for Sustainable Development) funded by BELSPO, The Belgian Science Policy. François Fripiat thanks the COST Action ES0801 for the funding of a Short Term Scientific Mission. Luc André thanks the “Fonds National de la Recherche Scientifique” (FNRS, Belgium) for its financial support (FRFC project 2.4512.00). Bruno Delille is a research associated with the F.R.S.-FNRS. François Fripiat was and is a postdoctoral fellows with the F.R.S.-FNRS and Fonds Wetenschappelijk Onderzoek (FWO, Belgium), respectively. We are very grateful to all three reviewers for their insightful comments which helped us to significantly improve the manuscript.

References

  1. Abraham K, Opfergelt S, Fripiat F, Cavagna A-J, de Jong JTM, Foley SF, André L, Cardinal D (2008) δ30Si and δ29Si determinations on USGS BHVO-1 and BHVO-2 reference materials with a new configuration on a Nu Plasma Multi-Collector ICP-MS. Geostand Geoanal Res 32(2):193–202CrossRefGoogle Scholar
  2. Arar EJ, Collins GB (1997) Method 445.0: in vitro determination of chlorophyll a and pheophytin a in marine and freshwater phytoplankton by fluorescence, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection AgencyGoogle Scholar
  3. Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarctic Sci 16(4):471–486CrossRefGoogle Scholar
  4. Arrigo KR, Lizotte MP, Mock T (2010) Sea ice algae. In: Thomas DN, Dieckmann GS (eds) Sea ice. Blackwell Science Ltd., OxfordGoogle Scholar
  5. Beucher CP, Brzezinski MA, Jones JL (2008) Source and biological fractionation of silicon isotopes in the Eastern Equatorial Pacific. Geochim Cosmochim Acta 72:3063–3073CrossRefGoogle Scholar
  6. Bidle KD, Azam F (1999) Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397:508–512CrossRefGoogle Scholar
  7. Brzezinski MA, Jones JL, Bidle KD, Azam F (2003) The balance between silica production and silica dissolution in the sea: insights from Monterey Bay, California, applied to the global data set. Limnol Oceanogr 48(5):1846–1854CrossRefGoogle Scholar
  8. Cardinal D, Alleman LY, de Jong J, Ziegler K, André L (2003) Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J Anal At Spectrom 18:213–218CrossRefGoogle Scholar
  9. Cardinal D, Alleman LY, Dehairs F, Savoye N, Trull TW, André L (2005) Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters. Global Biogeochem Cycles 19:GB2007. doi: 10.1029/2004GB002364 CrossRefGoogle Scholar
  10. Cavagna A-J, Fripiat F, Dehairs F, Wolf-Gladrow D, Cisewski B, Savoye N, André L, Cardinal D (2011) Silicon uptake and supply during a Southern Ocean iron fertilization experiment (EIFEX) tracked by Si isotopes. Limnol Oceanogr 56(1):147–160CrossRefGoogle Scholar
  11. Cox GFN, Weeks WF (1983) Equations for determining the gas and brine volumes in sea-ice samples. J Glaciol 29(102):306–316Google Scholar
  12. de Brauwere A, Fripiat F, Cardinal D, Cavagna A-J, De Ridder F, André L, Elskens M (2012) Isotopic model of oceanic silicon cycling: the Kerguelen Plateau case study. Deep-Sea Res I 70:42–59CrossRefGoogle Scholar
  13. De La Rocha CL, Brzezinski MA, DeNiro MJ (1996) Purification recovery and laser-driven fluorination of silicon from dissolved and particulate silica for the measurement of natural stable isotope abundances. Anal Chem 68:3746–3750CrossRefGoogle Scholar
  14. De La Rocha CL, Brzezinski MA, DeNiro MJ (1997) Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim Cosmochim Acta 61(23):5051–5056CrossRefGoogle Scholar
  15. De La Rocha CL, Brzezinski MA, DeNiro MJ (2000) A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim Cosmochim Acta 64(14):2467–2477CrossRefGoogle Scholar
  16. De La Rocha CL, Bescont P, Croguennoc A, Ponzevera E (2011) The silicon isotopic composition of surface waters in the Atlantic and Indian sectors of the Southern Ocean. Geochim Cosmochim Acta 75:5283–5295CrossRefGoogle Scholar
  17. Delille B, Jourdain B, Borges AV, Tison J-L, Delille D (2007) Biogas (CO2, O2, dimethylsulfide) dynamics in Spring Antarctic fast ice. 52(4):1367–1379. Limnol Oceanogr 52(4):1367–1369CrossRefGoogle Scholar
  18. Demarest MS, Brzezinski MA, Beucher CP (2009) Fractionation of silicon isotopes during biogenic silica dissolution. Geochim Cosmochim Acta 73:5572–5583CrossRefGoogle Scholar
  19. Ehlert I (2012) On the evolution of first-year sea ice, Ph.D. Thesis. In: Max-Planck Institute for Meteorology, Hamburg, Germany. Available at http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/WEB_BzE_122.pdf Accessed 26 Feb 2013
  20. Elskens M, de Brauwere A, Beucher C, Corvaisier R, Savoye N, Tréguer P, Baeyens W (2007) Statistical process control in assessing production and dissolution rates of biogenic silica in marine environments. Mar Chem 106:272–286CrossRefGoogle Scholar
  21. Fripiat F, Cardinal D, Tison J-L, Worby A, André L (2007) Diatoms-induced Si-isotopic fractionation in Antarctic sea-ice. J Geophys Res 112:G02001. doi: 10.1029/2006JC000244 Google Scholar
  22. Fripiat F, Cavagna A-J, Savoye N, Dehairs F, André L, Cardinal D (2011) Isotopic constraints on the Si-biogeochemical cycle of the Antarctic zone. Mar Chem 123:11–22CrossRefGoogle Scholar
  23. Fry B (2006) Stable isotope ecology. Springer, New YorkCrossRefGoogle Scholar
  24. Gleitz M, van der Loeff MR, Thomas DN, Dieckmann GS, Millero FJ (1995) Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar Chem 51:81–91CrossRefGoogle Scholar
  25. Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res II 41(8):1623–1644CrossRefGoogle Scholar
  26. Griewank PJ, Notz D (2013) Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage. J Geophys Res Oceans 118(7):3370–3386. doi: 10.1002/jgrc.20247 CrossRefGoogle Scholar
  27. Horner R, Schrader GC (1982) Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 36(4):485–503Google Scholar
  28. Jardon FP, Vivier F, Vancoppenolle M, Lourenco A, Bouruet-Aubertot P, Cuypers Y (2013) Full-depth desalination of warm sea ice. J Geophys Res Oceans 118:435–447. doi: 10.1029/2012JC007962 CrossRefGoogle Scholar
  29. Lee SH, Whitledge TE, Kang S-H (2008) Spring time production of bottom ice algae in the landfast sea ice zone at Barrow. Alaska J Exp Mar Biol Ecol 367:204–212CrossRefGoogle Scholar
  30. Legendre L, Ackley SF, Dieckmann GS, Gulliksen B, Horner R, Hoshiai T, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota 2. Global significance. Polar Biol 12:429–444Google Scholar
  31. Meiners K, Brinkmeyer R, Granskog MA, Lindfors A (2004) Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea). Aquat Microb Ecol 35:283–296CrossRefGoogle Scholar
  32. Notz D, Worster MG (2009) Desalination processes of sea ice revisited. J Geophys Res 114:C05006. doi: 10.1029/2008JC004885 Google Scholar
  33. Petrich C, Langhorne PJ, Sun ZF (2006) Modelling the interrelationships between permeability, effective porosity and total porosity in sea ice. Cold Reg Sci Tech 44:131–144. doi: 10.1016/j.coldregions.2005.10.001 CrossRefGoogle Scholar
  34. Reynolds BC, Frank M, Halliday AN (2006) Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet Sci Lett 244:431–443CrossRefGoogle Scholar
  35. Reynolds BC, Aggarwal J, André L, Baxter D, Beucher C, Brzezinski MA, Engström E, Georg BR, Land M, Leng MJ, Opfergelt S, Rodushkin I, Sloane HJ, van den Boorn HJM, Vroon PZ, Cardinal D (2007) An inter-laboratory comparison of Si isotope reference materials. J Anal At Spectrom 22:561–568CrossRefGoogle Scholar
  36. Riedel A, Michel C, Gosselin M, Leblanc B (2008) Winter–spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean. J Mar Syst 74:918–932CrossRefGoogle Scholar
  37. Sigman DM, Karsh KL, Casciotti KL (2009) Nitrogen isotopes in the ocean. In: Steele JH, Turekian KK, Thorpe SA (eds) Encyclopedia of ocean sciences (update from 2001). Academic Press, London, pp 4138–4153Google Scholar
  38. Sutton JN, Varela DE, Brzezinski MA, Beucher CP (2013) Species-dependent silicon isotope fractionation by marine diatoms. Geochim Cosmochim Acta 104:300–309CrossRefGoogle Scholar
  39. Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–645CrossRefGoogle Scholar
  40. Thomas DN, Papadimitriou S, Michel C (2010) Biogeochemistry of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice. Blackwell Science Ltd., OxfordGoogle Scholar
  41. Vancoppenolle M, Goosse H, de Montety A, Fichefet T, Tremblay B, Tison J-L (2010) Modeling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica. J Geophys Res 115:C02005. doi: 10.1029/2009JC005369 Google Scholar
  42. Varela DA, Pride CJ, Brzezinski MA (2004) Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochem Cycles 18:GB1047. doi: 10.1029/2003GB002140 CrossRefGoogle Scholar
  43. Worster MG, Wettlaufer JS (1997) Natural convection, solute trapping, and channel formation during solidification of saltwater. J Phys Chem B 101:6132–6136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • François Fripiat
    • 1
    • 5
    Email author
  • Jean-Louis Tison
    • 1
    • 5
  • Luc André
    • 2
  • Dirk Notz
    • 3
  • Bruno Delille
    • 4
  1. 1.Department of Earth and Environmental SciencesUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Department of Earth SciencesRoyal Museum for Central AfricaTervurenBelgium
  3. 3.Max Planck Institute for MeteorologyHamburgGermany
  4. 4.Unité d’Océanographie Chimique, Interfacultary Center for Marine ResearchUniversité de LiègeLiègeBelgium
  5. 5.Earth System Sciences & Analytical and Environmental Chemistry Vrije Universiteit BrusselBrussels Belgium

Personalised recommendations