, Volume 118, Issue 1–3, pp 83–101 | Cite as

Partitioning the net ecosystem carbon balance of a semiarid steppe into biological and geological components

  • A. ReyEmail author
  • L. Belelli-Marchesini
  • G. Etiope
  • D. Papale
  • E. Canfora
  • R. Valentini
  • E. Pegoraro


Recent studies have highlighted the need to consider geological carbon sources when estimating the net ecosystem carbon balance (NECB) of terrestrial ecosystems located in areas potentially affected by geofluid circulation. We propose a new methodology using physical parameters of the atmospheric boundary layer to quantify the CO2 coming from deep ground origin in a steppe ecosystem located in the SE of Spain. Then, we compared published NECB estimates at the site with seasonal patterns of soil CO2 efflux and biological activity measured by satellite images over a 2-year period (2007/2008). The alpha grass ecosystem was a net carbon source (93.8 and 145.1 g C m−2 year−1, in 2007 and 2008, respectively), particularly as a result of large amounts of carbon released over the dry period that were not related to biological activity. While the highest ecosystem CO2 emission rates were measured over the dry period (reaching up to 15 μmol m−2 s−1), soil CO2 efflux rates (ca. 0.5 μmol m−2 s−1) and plant productivity were minimal during this period. After using a linear relationship between NECB and wind speed for different stability conditions and wind sectors, we estimated the geological flux F GEO (217.9 and 244.0 g C m−2 in 2007 and 2008, respectively) and subtracted it from the NECB to obtain the biological flux F BIO (−124.0 and −98.9 g C m−2 in 2007 and 2008, respectively). We then partitioned F BIO into gross primary productivity and ecosystem respiration and proved that, after removing F GEO, ecosystem respiration and soil CO2 efflux followed similar seasonal patterns. The annual contribution of the geological component to NECB was 49.6 and 46.7 % for the year 2007 and 2008, respectively. Therefore, it is clear that geological carbon sources should be quantified in those ecosystems located in areas with potential natural emission of geological gases to the surface.


Semiarid ecosystems Ecosystem respiration Geofluid circulation Geological carbon sources Gross primary productivity NECB partitioning Soil CO2 efflux NDVI 



This study was funded by the Spanish Ministry of Science, project CARBOARID (CGL2005-00563) and Ministry of Environment (INIA, project SUM2006-00018-C02-0) and the European Project CARBOEXTREME. Dr. Rey was granted a personal Visiting Fellowship “Salvador de Madariaga” by the Spanish Ministry of Science to the CNR Rome and The University of La Sapienza and a Visiting Exchange programme by the Spanish Research Council (CSIC) and the Andalucian Government to visit The University of La Tuscia. She also thanks the bilateral programs Acciones Integradas Italy–Spain. We thank the Cabo de Gata Natural Park for supporting the research and Dr. Oyonarte and Mrs. Raimundo for assistance in soil CO2 efflux measurements. We thank three anonymous reviewers for very useful comments on the manuscript.


  1. Aubinet M, Vesala T, Papale D (2012) Eddy covariance. A practical guide to measurement and data analysis. Springer Atmospheric Science, LondonGoogle Scholar
  2. Bain WG, Hutyra L, Patterson DC, Bright AV, Daube BC, Munger JW, Wofsy SC (2005) Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agric Forest Meteor 131:225–232CrossRefGoogle Scholar
  3. Balaguer L, Pugnaire FJ, Martinez-Ferri E, Armas C, Valladares F, Manrique E (2002) Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency during extreme aridity in Stipa tenacissima L. Plant Soil 240:343–352CrossRefGoogle Scholar
  4. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492CrossRefGoogle Scholar
  5. Baldocchi DD (2008) Breathing of the terrestrial biosphere: lessons learned from a network of carbon dioxide flux measurement system. Turner Review num. 13. Aust J Bot 56:1–26CrossRefGoogle Scholar
  6. Beer C, Reichstein M, Tomeller E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau G, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward I, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 1126:1–10Google Scholar
  7. Bond-Lamberty B, Thomson A (2010) A global database of soil respiration data. Biogeosciences 7:1915–1926CrossRefGoogle Scholar
  8. Campbell GS, Norman JM (1998) An introduction to environmental biophysics. Springer, New York, p 286CrossRefGoogle Scholar
  9. Chapin FS III, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1040–1050CrossRefGoogle Scholar
  10. Chiodini G, Frondini F, Kerrick DM, Rogie J, Parello F, Peruzzi LF, Zanzari AR (1999) Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem Geol 159:205–222CrossRefGoogle Scholar
  11. Chiodini G, Caliro S, Cardellini C, Aviro R, Granieri D, Schmidt A (2008) Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth Planet Sci Lett 274:372–379CrossRefGoogle Scholar
  12. Ciais P, Schelhaas MJ, Zaehle S, Piao SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze ED, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ (2008) Carbon accumulation in European forests. Nat Geosci 1:425–429CrossRefGoogle Scholar
  13. Conen F, Smith KA (1998) A re-examination of closed flux chamber methods for the measurement of trace gas emissions from soils to the atmosphere. Eur J Soil Sci 49:701–707CrossRefGoogle Scholar
  14. Davidson EA, Savage K, Verchot LV, Navarro R (2002) Minimizing artefacts and biases in chamber-based measurements of soil respiration. Agric Forest Meteor 113:21–37CrossRefGoogle Scholar
  15. Davies JH, Davies DR (2010) Earth’s surface heat flux. Solid Earth. doi: 10.5194/se-1-5-2010
  16. Efron B (1981) Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68:589–599. doi: 10.1093/biomet/68.3.589 CrossRefGoogle Scholar
  17. Etiope G (1999) Subsoil CO2, and CH4 and their advective transfer from faulted grassland to the atmosphere. J Geophys Res 104:16889–16894CrossRefGoogle Scholar
  18. Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Int 129:185–204CrossRefGoogle Scholar
  19. Etiope G, Nakada R, Tanaka K, Yoshida N (2011) Gas seepage from Tokamachi mud volcanoes, onshore Niigata Basin (Japan): origin, post-genetic alterations and CH4–CO2 fluxes. Appl Geochem 26:348–359CrossRefGoogle Scholar
  20. Evans WC, Sorey ML, Kennedy BM, Stonestrom DA, Rogie JD, Shuster DL (2001) High CO2 emissions through porous media: transport mechanisms and implications for flux meas-urement and fractionation. Chem Geol 177:15–29CrossRefGoogle Scholar
  21. Fang C, Moncrieff JB (1998) Simple and fast technique to measure CO2 profiles in soil. Soil Biol Biochem 30:2107–2112CrossRefGoogle Scholar
  22. Fernández M, Marzán I, Correia A, Ramalho E (1998) Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula. Tectonophy 291:29–53CrossRefGoogle Scholar
  23. Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Change Biol 2:169–182CrossRefGoogle Scholar
  24. Hastings SI, Oechel WC, Muhlia-Melo A (2005) Diurnal, seasonal and annual variation in the net ecosystem exchange of a desert shrub community (Sarcocaulescent) in Baja California. Mexico Glob Change Biol 11:927–939CrossRefGoogle Scholar
  25. Hollinger DY, Goltz SM, Davidson EA, Lee JT, Tu K, Valentine HT (1999) Seasonal patterns and environmental control of carbon dioxide and water vapor exchange in an ecotonal boreal forest. Glob Change Biol 5:891–902CrossRefGoogle Scholar
  26. Huxman TE, Smith MD, Day PA et al (2004) Convergence across biomass to a common rain-use efficiency. Nature 429:651–654CrossRefGoogle Scholar
  27. Janssens IA, Kowalski AS, Longdoz B, Ceulemans R (2000) Assessing forest soil CO2 efflux: an in situ comparison of four techniques. Tree Physiol 20:23–32CrossRefGoogle Scholar
  28. Jarvis PG, Rey A, Petsikos C, Wingate L, Rayment M, Pereira J, Banza J, David J, Miglietta F, Borghetti M, Manca G, Valentini R (2007) Drying and wetting of soils stimulates decomposition and carbon dioxide emission: the “Birch Effect”. Tree Physiol 27:929–940CrossRefGoogle Scholar
  29. Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P, Wohlfahrt G (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob Change Biol 16:187–208CrossRefGoogle Scholar
  30. Law BE, Baldocchi DD, Anthoni PM (1999) Belowcanopy and soil CO2 fluxes in a ponderosa pine forest. Agric For Meteorol 94:171–188CrossRefGoogle Scholar
  31. Leuning R, Etheridge D, Luhar A, Dunse B (2008) Atmospheric monitoring and verification technologies for CO2 geosequestration. Int J Greenh Gas Control 2:401–414CrossRefGoogle Scholar
  32. Lewicki JL, Fisher ML, Hilley GE (2008) Six-week time series of eddy covariance CO2 flux at Mammoth Mountain, California: performance evaluation and role of meteorological forcing. J Volcanol Geothermal Res 171:178–190CrossRefGoogle Scholar
  33. Luo H, Oechel WC, Hastings SJ, Zulueta R, Qian Y, Kwon H (2007) Mature semiarid chaparral ecosystems can be a significant sink for atmospheric carbon dioxide. Glob Change Biol 13:386–396CrossRefGoogle Scholar
  34. Mareschal JC, Jaupart C, Phaneuf C, Perry C (2012) Geoneutrinos and the energy budget of the Earth. J Geodyn 54:43–54CrossRefGoogle Scholar
  35. Massman WJ, Sommerfeld RA, Mosier AR, Zeller KF, Hehn TJ, Rochelle SG (1997) A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of CO2, N2O, and CH4 through layered snowpacks. J Geophys Res 102:18851–18863CrossRefGoogle Scholar
  36. McGee KA, Gerlach TM, Kessler R, Doukas MP (2000) Geochemical evidence for a magmatic CO2 degassing event at Mammoth Mountain, California, September–December 1997. J Geophys Res 105:8447–8456CrossRefGoogle Scholar
  37. Mörner NA, Etiope G (2002) Carbon degassing from the lithosphere. Glob Planet Change 33:185–203CrossRefGoogle Scholar
  38. Nachshon U, Dragila M, Weisbrod N (2012) From atmospheric winds to fracture ventilation: cause and effect. J Geophys Res 117:G02016. doi: 10.1029/2011JG001898 Google Scholar
  39. Nagy Z, Pintér K, Pavelka M, Darenová E, Balogh J (2011) Carbon fluxes of surfaces vs. ecosystems: advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems. Biogeoscience 8:2523–2534CrossRefGoogle Scholar
  40. Norman JM, Garcia R, Verma SB (1992) Soil surface CO2 fluxes and the carbon budget of a grassland. J Geophys Res 97:18845–18853CrossRefGoogle Scholar
  41. Oldenburg CM, Lewicki JL, Happle RP (2003) Near-surface monitoring strategies for geologic carbon dioxide storage verification. Lawrence Berkeley National Laboratory: Paper LBNL 54089Google Scholar
  42. Papale D, Valentini R (2003) A new assessment of European forest carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Change Biol 9:525–535Google Scholar
  43. Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeoscience 3:571–583CrossRefGoogle Scholar
  44. Reichstein M, Falge E, Baldocchi DD, Papale D, Aubinet M, Berbigier P, Bernhofer C, Gilmanov TG, Granier A, Grünwald T, Havrankova K, Ilvesniemi H, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpane J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1–16Google Scholar
  45. Rey A, Pegoraro E, Oyonarte C, Were A, Escribano P, Raimundo J (2011) Impact f land degradation on soil respiration in a steppe ecosystem in the SE of Spain. Soil Biol Biochem 43:393–403CrossRefGoogle Scholar
  46. Rey A, Belelli-Marchesini L, Were A, Serrano P, Etiope G, Papale D, Domingo F, Pegoraro E (2012a) Wind as the main driver of net ecosystem carbon balance of a semiarid steppe ecosystem in the SE of Spain. Glob Change Biol 18:539–554CrossRefGoogle Scholar
  47. Rey A, Etiope G, Belelli-Marchesini L, Papale D, Valentini R (2012b) Geological carbon sources may confound ecosystem carbon balance estimates: evidence from a semiarid steppe in the SE of Spain. J Geophys Res 117:G03034. doi: 10.1029/2012JG001991 Google Scholar
  48. Reynolds JF, Stafford SM, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global desertification: building a science for dryland development. Science 316:847–851CrossRefGoogle Scholar
  49. Rogie JD, Kerrick DM, Sorey ML, Chiodini G, Galloway DL (2001) Dynamics of carbon dioxide emission at Mammoth Mountain, California. Earth Planet Sci Lett 188:535–541CrossRefGoogle Scholar
  50. Rotenberg E, Yakir D (2010) Contribution of semi-arid forests to the climate system. Science 327:451–454CrossRefGoogle Scholar
  51. Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA (1999) A global terrestrial monitoring network, integrating tower fluxes, flask sampling, ecosystem modelling and EOS satellite data. Remote Sens Environ 70:108–127CrossRefGoogle Scholar
  52. Sanz de Galdeano C, López-Casado C, Delgado J, Peinado MA (1995) Shallow seismicity and active faults in the Betic Cordillera. A preliminary approach to seismic sources associated with specific faults. Tectonophysics 248:293–302CrossRefGoogle Scholar
  53. Schimel DS (2010) Climate. Drylands in the earth system. Science 327:418–419CrossRefGoogle Scholar
  54. Schwalm CR, Williams CA, Schaefer KN, Arneth A, Bonal D, Buchmann N, Chen J, Law BE, Lindroth A, Luyssaert S, Reichstein M, Richardson AD (2010) Assimilation exceeds respiration sensitivity to drought: a FLUXNET synthesis. Glob Change Biol 16:657–670CrossRefGoogle Scholar
  55. Scott RL, Huxman TE, Williams DG, Goodrich DC (2006) Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment. Glob Change Biol 12:311–324CrossRefGoogle Scholar
  56. Smith KA, Ball T, Conen F, Massheder J, Rey A (2003) Soil atmosphere exchange of greenhouse gases: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791CrossRefGoogle Scholar
  57. Takle ES, Massman WJ, Brandle JR, Schmidt RA, Zhou X, Litvina IV, Garcia R, Doyle G, Rice CV (2004) Influence of high frequency ambient pressure pumping on carbon dioxide efflux from soil. Agric For Meteorol 124:193–206CrossRefGoogle Scholar
  58. Weeks EP (2001) Effect of topography on gas flow in unsaturated fractured rock: concepts and observations. In: Evans DD, Nicholson TJ (eds) Flow and transport through unsaturated fractured rock, Geophys. Monogr. Ser. vol 42. AGU, Washington, pp 165–170Google Scholar
  59. Weisbrod N, Dragila MI, Nachshon U, Pillersdorf M (2009) Falling through the cracks: the role of fractures in Earth-atmosphere gas exchange. Geophys Res Lett 36:L02401. doi: 10.1029/2008GL036096 Google Scholar
  60. Welles JM, Demetriades-Shah TH, McDermitt DK (2001) Considerations for measuring ground CO2 effluxes with chambers. Chem Geol 177:3–13CrossRefGoogle Scholar
  61. Wohlfahrt G, Fenstermaker LF, Arnone JA III (2008) Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Glob Change Biol 14:1475–1487CrossRefGoogle Scholar
  62. WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports No 103. FAO, Rome, 128 ppGoogle Scholar
  63. Yuan W, Luo Y, Richardson AD, Oren R, Luyssaerts S, Janssens IA, Ceulemans R, Zhou X, Grünwald T, Aubinet M, Berhofer C, Baldocchi D, Chen J, Dunn AL, Deforest JL, Dragoni D, Goldstein AH, Moors E, Munger JW, Monson RK, Suyker AE, Starr G, Scott RL, Tenhunen J, Verma SB, Vesala T, Wofsy SC (2009) Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Glob Change Biol 15:2905–2920CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Rey
    • 1
    • 3
    Email author
  • L. Belelli-Marchesini
    • 2
    • 4
  • G. Etiope
    • 3
    • 5
  • D. Papale
    • 2
  • E. Canfora
    • 2
  • R. Valentini
    • 2
    • 6
  • E. Pegoraro
    • 7
  1. 1.Department Biogeography and Global Change, National Museum of Natural SciencesSpanish Scientific Council (CSIC)MadridSpain
  2. 2.Department for Innovation in Biological, Agro-food and Forest Systems, DIBAFUniversity of La TusciaViterboItaly
  3. 3.INGV, Istituto Nazionale di Geofisica e Vulcanologia Sezione Roma 2RomeItaly
  4. 4.Department of Earth Sciences, Faculty of Earth and Life SciencesVrije UniversiteitAmsterdamThe Netherlands
  5. 5.Faculty of Environmental Science and EngineeringBabes-Bolyai UniversityCluj-NapocaRomania
  6. 6.Euromediterranean Center for Climate Change (CMCC)LecceItaly
  7. 7.MadridSpain

Personalised recommendations