Advertisement

Biogeochemistry

, Volume 116, Issue 1–3, pp 83–101 | Cite as

Chemical recovery of acidified Bohemian lakes between 1984 and 2012: the role of acid deposition and bark beetle induced forest disturbance

  • Filip OulehleEmail author
  • Tomáš Chuman
  • Vladimír Majer
  • Jakub Hruška
Article

Abstract

Assessment of temporal trends and rates of change in hydrochemical parameters and forest cover has been conducted to elucidate key drivers of surface water acidification in glacial lakes in the Czech Republic. Since 1984, the key driver in acidification reversal was sulphate (SO4) concentration (median decrease of −3.58 μeq L−1 yr−1) which fell in line with reductions in sulphur (S) deposition. Reduction of nitrogen (N) deposition was followed by proportional reduction in nitrate (NO3) leaching although decline in NO3 concentrations was more pronounced at two sites, the Čertovo Lake (CT) and Prášilské Lake (PR) until 2006; only Žďárské pond showed effective catchment N immobilization. Coherent decline of chloride concentration was detected across all sites. The decrease of strong mineral acids was partly compensated by decrease of inorganic aluminium (Alin), especially at sites most acidified in the beginning of observations (ANC1984–1986 between −160 and −90 μeq L−1 at CT, Černé Lake—CN and Plešné lake—PL) and by reductions of base cations and increases of pH. All lakes (CN, CT, PL, PR and LK) moved to the ANC range between −29 and 30 μeq L−1 (2010–2012) where sensitivity of pH to further reductions in acid anions may be expected. Concurrently, charge of weak organic acids (OAs) increased and partly balanced the strong mineral acid decrease as a consequence of (i) significant DOC (dissolved organic carbon) increase (median change of 0.13 mgC L−1 yr−1 since 1993) and (ii) deprotonation of weak OAs caused by pH rise. Since 2000s, bark beetle induced forest decline accelerated NO3 leaching at most of the catchments (by 200 % at LK, PL and PR). However, elevated N leaching was effectively neutralized by base cations (K, Mg, Ca) originating from decaying fresh litter, thus acidification recovery was not reversed, but slowed down. After cessation of NO3 leaching we hypothesise that collapsed tree canopy across catchments (from 12 to 87 % compared to 1984) will cause lower total acid input in precipitation (S + N) and regrowth of vegetation may stimulate higher N immobilization (in biomass and soil); processes which could lead to further increase of ANC and pH, key indicators for biological recovery.

Keywords

Acidification Nitrogen saturation Aluminium Recovery Bark beetle Land cover 

Notes

Acknowledgments

During the three decades various financial sources were utilized to keep monitoring going. The most recent work has been financially supported by the research plan of the Czech Geological Survey (MZP0002579801) and by ICP Waters. We thank Oldřich Myška for field assistance and Tomáš Navrátil for his help with geochemical modelling.

Supplementary material

10533_2013_9865_MOESM1_ESM.docx (121 kb)
Supplementary material 1 (DOCX 121 kb)

References

  1. Aber J, McDowell W, Nadelhoffer K et al (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48:921–934CrossRefGoogle Scholar
  2. Angeler DG, Johnson RK (2012) Temporal scales and patterns of invertebrate biodiversity dynamics in boreal lakes recovering from acidification. Ecol Appl 22:1172–1186CrossRefGoogle Scholar
  3. Brown M, Black TA, Nesic Z et al (2010) Impact of mountain pine beetle on the net ecosystem production of lodgepole pine stands in British Columbia. Agric For Meteorol 150:254–264. doi: 10.1016/j.agrformet.2009.11.008 CrossRefGoogle Scholar
  4. Čada V, Svoboda M, Janda P (2013) Dendrochronological reconstruction of the disturbance history and past development of the mountain Norway spruce in the Bohemian Forest, central Europe. For Ecol Manag 295:59–68CrossRefGoogle Scholar
  5. Chuman T, Hruška J, Oulehle F, et al. (2012) Does stream water chemistry reflect watershed characteristics? Environ Monit Assess. doi:  10.1007/s10661-012-2976-3
  6. Čížková P, Svoboda M, Křenová Z (2011) Natural regeneration of acidophilous spruce mountain forests in non-intervention management areas of the Šumava National Park—the first results of the biomonitoring project. Silva Gabreta 17:19–35Google Scholar
  7. Dahlgren RA, Driscoll CT (1994) The effects of whole-tree clear-cutting on soil processes at the Hubbard-Brook-Experimental-Forest, New-Hampshire, USA. Plant Soil 158:239–262CrossRefGoogle Scholar
  8. De Wit HA, Mulder J, Hindar A, Hole L (2007) Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition. Environ Sci Technol 41:7706–7713. doi: 10.1021/Es070557f CrossRefGoogle Scholar
  9. Driscoll CT (1984) A procedure for the fractionation of aqueous aluminum in dilute acidic waters. Int J Environ Anal Chem 16:267–283CrossRefGoogle Scholar
  10. Edburg SL, Hicke JA, Brooks PD et al (2012) Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Front Ecol Environ 10:416–424. doi: 10.1890/110173 CrossRefGoogle Scholar
  11. Erlandsson M, Buffam I, Folster J et al (2008) Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Glob Chang Biol 14:1191–1198CrossRefGoogle Scholar
  12. Evans CD, Monteith DT (2001) Trends in surface water chemistry at AWMN sites 1988–2000: evidence for recent recovery at a national scale. Hydrol Earth Syst Sci 5:351–366CrossRefGoogle Scholar
  13. Evans CD, Cullen JM, Alewell C et al (2001) Recovery from acidification in European surface waters. Hydrol Earth Syst Sci 5:283–297CrossRefGoogle Scholar
  14. Evans CD, Reynolds B, Jenkins A et al (2006) Evidence that soil carbon pool determines susceptibility of semi-natural ecosystems to elevated nitrogen leaching. Ecosystems 9:453–462. doi: 10.1007/s10021-006-0051-z CrossRefGoogle Scholar
  15. Evans CD, Cooper DM, Monteith DT et al (2010) Linking monitoring and modelling: can long-term datasets be used more effectively as a basis for large-scale prediction? Biogeochemistry 101:211–227. doi: 10.1007/s10533-010-9413-x CrossRefGoogle Scholar
  16. Evans CD, Monteith DT, Fowler D et al (2011) Hydrochloric acid: an overlooked driver of environmental change. Environ Sci Technol 45:1887–1894. doi: 10.1021/es103574u CrossRefGoogle Scholar
  17. Evans CD, Jones TG, Burden A et al (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Glob Chang Biol. doi: 10.1111/j.1365-2486.2012.02794.x Google Scholar
  18. Goodale CL, Aber JD, Vitousek PM (2003) An unexpected nitrate decline in New Hampshire streams. Ecosystems 6:75–86. doi: 10.1007/s10021-002-0219-0 CrossRefGoogle Scholar
  19. Hais M, Kučera T (2008) Surface temperature change of spruce forest as a result of bark beetle attack: remote sensing and GIS approach. Eur J Forest Res 127(4):327–336CrossRefGoogle Scholar
  20. Hruška J, Kopáček J, Hlavatý T, Hošek J (2000) Trend of atmospheric deposition of acidifying compounds at Certovo Lake, south-western Czech Republic (1992–1999). Silva Gabreta 4:71–86Google Scholar
  21. Hruška J, Köhler S, Laudon H, Bishop K (2003) Is a universal model of organic acidity possible: comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. Environ Sci Technol 37:1726–1730. doi: 10.1021/es0201552 CrossRefGoogle Scholar
  22. Huber C (2005) Long lasting nitrate leaching after bark beetle attack in the highlands of the Bavarian Forest National Park. J Environ Qual 34:1772–1779. doi: 10.2134/jeq2004.0210 CrossRefGoogle Scholar
  23. Huber C, Aherne J, Weis W et al (2010) Ion concentrations and fluxes of seepage water before and after clear cutting of Norway spruce stands at Ballyhooly, Ireland, and Höglwald, Germany. Biogeochemistry 101:7–26. doi: 10.1007/s10533-010-9459-9 CrossRefGoogle Scholar
  24. Jonášová M, Prach K (2004) Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak. Ecol Eng 23:15–27. doi: 10.1016/j.ecoleng.2004.06.010 CrossRefGoogle Scholar
  25. Kaňa J, Tahovská K, Kopáček J (2012) Response of soil chemistry to forest dieback after bark beetle infestation. Biogeochemistry 1–15. doi:  10.1007/s10533-012-9765-5
  26. Kopáček J, Posch M (2011) Anthropogenic nitrogen emissions during the Holocene and their possible effects on remote ecosystems. Glob Biogeochem Cycles 25:GB2017. doi: 10.1029/2010GB003779 Google Scholar
  27. Kopáček J, Veselý J (2005) Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos Environ 39:2179–2188. doi: 10.1016/j.atmosenv.2005.01.002 CrossRefGoogle Scholar
  28. Kopáček J, Veselý J, Stuchlík E et al (2001) Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850–2000). Hydrol Earth Syst Sci 5:391–405CrossRefGoogle Scholar
  29. Kopáček J, Hejzlar J, Kaňa J et al (2003) Photochemical, chemical, and biological transformations of dissolved organic carbon and its effect on alkalinity production in acidified lakes. Limnol Oceanogr 48:106–117CrossRefGoogle Scholar
  30. Kopáček J, Marešová M, Hejzlar J, Norton SA (2007) Natural inactivation of phosphorus by aluminum in preindustrial lake sediments. Limnol Oceanogr 52:1147–1155CrossRefGoogle Scholar
  31. Kopáček J, Hejzlar J, Kaňa J et al (2009) Trends in aluminium export from a mountainous area to surface waters, from deglaciation to the recent: effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation. J Inorg Biochem 103:1439–1448. doi: 10.1016/j.jinorgbio.2009.07.019 CrossRefGoogle Scholar
  32. Kopáček J, Turek J, Hejzlar J, Porcal P (2011) Bulk deposition and throughfall fluxes of elements in the Bohemian Forest (central Europe) from 1998 to 2009. Boreal Environ Res 16:495–508Google Scholar
  33. Kopáček J, Stuchlík E, Fott J et al (1998) Reversibility of acidification of mountain lakes after reduction in nitrogen and sulfur emissions in central Europe. Limnol Oceanogr 43:357–361CrossRefGoogle Scholar
  34. Krám P, Hruška J, Driscoll CT, Johnson CE (1995) Biogeochemistry of aluminum in a forest catchment in the Czech Republic impacted by atmospheric inputs of strong acids. Water Air Soil Pollut 85:1831–1836CrossRefGoogle Scholar
  35. Krám P, Hruška J, Driscoll CT et al (2009) Long-term changes in aluminum fractions of drainage waters in two forest catchments with contrasting lithology. J Inorg Biochem 103:1465–1472. doi: 10.1016/j.jinorgbio.2009.07.025 CrossRefGoogle Scholar
  36. Křenová Z, Hruška J (2012) Proper zonation—an essential tool for the future conservation of the Šumava National Park. Eur J Environ Sci 2:62–72Google Scholar
  37. Křížek M, Vočadlová K, Engel Z (2012) Cirque overdeepening and their relationship to morphometry. Geomorphology 139–140:495–505. doi: 10.1016/j.geomorph.2011.11.014 Google Scholar
  38. Lovett GM, Goodale CL (2011) A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems 14:615–631. doi: 10.1007/s10021-011-9432-z CrossRefGoogle Scholar
  39. Majer V, Cosby BJ, Kopáček J et al (2003) Modelling reversibility of Central European mountain lakes from acidification: part I—the Bohemian forest. Hydrol Earth Syst Sci 7:494–509CrossRefGoogle Scholar
  40. Monteith DT, Stoddard JL, Evans CD et al (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–539. doi: 10.1038/Nature06316 CrossRefGoogle Scholar
  41. Monteith DT, Evans CD, Henrys PA et al (2012) Trends in the hydrochemistry of acid-sensitive surface waters in the UK 1988–2008. Ecol Indic. doi: 10.1016/j.ecolind.2012.08.013 Google Scholar
  42. Nedbalová L, Vrba J, Fott J et al (2006) Biological recovery of the Bohemian Forest lakes from acidification. Biologia 61:S453–S465. doi: 10.2478/s11756-007-0071-y CrossRefGoogle Scholar
  43. Novák M, Kirchner JW, Groscheová H et al (2000) Sulfur isotope dynamics in two central european watersheds affected by high atmospheric deposition of SOx. Geochim Cosmochim Acta 64:367–383. doi: 10.1016/S0016-7037(99)00298-7 CrossRefGoogle Scholar
  44. Oulehle F, Hruška J (2009) Rising trends of dissolved organic matter in drinking-water reservoirs as a result of recovery from acidification in the Ore Mts, Czech Republic. Environ Pollut 157:3433–3439. doi: 10.1016/j.envpol.2009.06.020 CrossRefGoogle Scholar
  45. Oulehle F, McDowell WH, Aitkenhead-Peterson JA et al (2008) Long-term trends in stream nitrate concentrations and losses across watersheds undergoing recovery from acidification in the Czech Republic. Ecosystems 11:410–425. doi: 10.1007/s10021-008-9130-7 CrossRefGoogle Scholar
  46. Oulehle F, Cosby BJ, Wright RF et al (2012) Modeling soil nitrogen: the MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Environ Pollut. doi: 10.1016/j.envpol.2012.02.021 Google Scholar
  47. Rogora M, Arisci S, Marchetto A (2012) The role of nitrogen deposition in the recent nitrate decline in lakes and rivers in Northern Italy. Sci Total Environ 417–418:214–223. doi: 10.1016/j.scitotenv.2011.12.067 CrossRefGoogle Scholar
  48. SanClements MD, Oelsner GP, McKnight DM et al (2012) New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the northeastern United States. Environ Sci Technol 46:3212–3219. doi: 10.1021/es204321x CrossRefGoogle Scholar
  49. Schecher WD, McAvoy DC (1992) MINEQL+: a software environment for chemical equilibrium modeling. Comput Environ Urban Syst 16:65–76. doi: 10.1016/0198-9715(92)90053-T CrossRefGoogle Scholar
  50. Skjelkvale BL, Stoddard JL, Jeffries DS et al (2005) Regional scale evidence for improvements in surface water chemistry 1990–2001. Environ Pollut 137:165–176. doi: 10.1016/j.envpol.2004.12.023 CrossRefGoogle Scholar
  51. Smith SJ, van Aardenne J, Klimont Z et al (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116. doi: 10.5194/acp-11-1101-2011 CrossRefGoogle Scholar
  52. Stoddard JL (1994) Long-term changes in watershed retention of nitrogen. Its causes and aquatic consequences. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs. American Chemical Society, WashingtonGoogle Scholar
  53. Stoddard JL, Jeffries DS, Lükewille A et al (1999) Regional trends in aquatic recovery from acidification in North America and Europe 1980–95. Nature 401:575–578CrossRefGoogle Scholar
  54. Sucker C, von Wilpert K, Puhlmann H (2011) Acidification reversal in low mountain range streams of Germany. Environ Monit Assess 174:65–89. doi: 10.1007/s10661-010-1758-z CrossRefGoogle Scholar
  55. Svoboda M, Matějka K, Kopáček J (2006) Biomass and element pools of understory vegetation in the catchments of Certovo Lake and Plesne Lake in the Bohemian Forest. Biologia 61:S509–S521CrossRefGoogle Scholar
  56. Svoboda M, Fraver S, Janda P et al (2010) Natural development and regeneration of a Central European montane spruce forest. For Ecol Manag 260:707–714. doi: 10.1016/j.foreco.2010.05.027 CrossRefGoogle Scholar
  57. Svoboda M, Janda P, Nagel TA et al (2012) Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian Forest, Czech Republic. J Veg Sci 23:86–97. doi: 10.1111/j.1654-1103.2011.01329.x CrossRefGoogle Scholar
  58. Svobodová J, Matěna J, Kopáček J et al (2012) Spatial and temporal changes of benthic macroinvertebrate assemblages in acidified streams in the Bohemian Forest (Czech Republic). Aquatic Insects 34:157–172. doi: 10.1080/01650424.2012.643048 CrossRefGoogle Scholar
  59. Tahovská K, Kopáček J, Šantrůčková H (2010) Nitrogen availability in Norway spruce forest floor—the effect of forest defoliation induced by bark beetle infestation. Boreal Environ Res 15:553–564Google Scholar
  60. Treml V, Wild J, Chuman T, Potůčková M (2010) Assessing the change in cover of non-indigenous dwarf-pine using aerial photographs, a case study from the hrubý jeseník mts the sudetes. J Landsc Ecol 3:90–104Google Scholar
  61. Turner IM, Wong YK, Chew PT, Bin IA (1996) Rapid assessment of tropical rain forest successional status using aerial photographs. Biol Conserv 77:177–183. doi: 10.1016/0006-3207(95)00145-X CrossRefGoogle Scholar
  62. UNECE (2012) Convention on long-range transboundary air pollution. http://www.unece.org/env/lrtap/. Accessed 3 Dec 2012
  63. Veselý J, Majer V, Kopáček J, Norton SA (2003) Increasing temperature decreases aluminum concentrations in Central European lakes recovering from acidification. Limnol Oceanogr 48:2346–2354CrossRefGoogle Scholar
  64. Veselý J, Majer V, Kopáček J et al (2005) Increasing silicon concentrations in Bohemian Forest lakes. Hydrol Earth Syst Sci 9:699–706CrossRefGoogle Scholar
  65. Veselý J, Hruška J, Norton SA et al (1998) Trends in the chemistry of acidified Bohemian lakes from 1984 to 1995: I. Major solutes. Water Air Soil Pollut 108:107–127CrossRefGoogle Scholar
  66. Vočadlová K, Křížek M, Čtvrtlíková M, Hekera P (2007) Hypothesis for the last stage of glaciation in the Černé Lake area (Bohemian Forest, Czech Republic). Silva Gabreta 13:205–2016Google Scholar
  67. Vrba J, Kopáček J, Fott J et al (2003) Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). Sci Total Environ 310:73–85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Filip Oulehle
    • 1
    • 2
    Email author
  • Tomáš Chuman
    • 1
    • 3
  • Vladimír Majer
    • 1
  • Jakub Hruška
    • 1
    • 2
  1. 1.Czech Geological SurveyPrague 1Czech Republic
  2. 2.Global Change Research Centre AS CRBrnoCzech Republic
  3. 3.Faculty of Science, Department of Physical GeographyCharles UniversityPrague 2Czech Republic

Personalised recommendations