, Volume 116, Issue 1–3, pp 241–259 | Cite as

Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian Rivers

  • Maria de Fátima F. L. RaseraEmail author
  • Alex V. Krusche
  • Jeffrey E. Richey
  • Maria V. R. Ballester
  • Reynaldo L. Victória


Current estimates of CO2 outgassing from Amazonian rivers and streams have considerable uncertainty since they are based on limited-time surveys of pCO2 measurements along the Amazon mainstem and mouths of major tributaries, using conservative estimates of gas exchange velocities. In order to refine basin-scale CO2 efflux estimates from Amazonian rivers, we present a long time (5-year) dataset of direct measurements of CO2 fluxes, gas transfer velocities and pCO2 measurements in seven representative rivers of the lowland Amazon basin fluvial network, six non-tidal (Negro, Solimões, Teles Pires, Cristalino, Araguaia and Javaés) and one tidal river (Caxiuanã), with sizes ranging from 4th to 9th order. Surveys were conducted from January 2006 to December 2010, in a total of 389 campaigns covering all stages of their hydrographs. CO2 fluxes and gas transfer velocities (k) were measured using floating chambers and pCO2 was measured simultaneously by headspace extraction followed by gas chromatography analysis. Results show high CO2 flux rate variability among rivers and hydrograph stages, ranging from −0.8 to 15.3 μmol CO2 m−2 s−1, with unexpected negative fluxes in clear-water rivers during low waters. Non-tidal rivers showed marked seasonal CO2 flux patterns, with significantly higher exchange during high waters. Seasonality was modulated by pCO2, which was positive and strongly correlated with discharge. In these rivers k was well correlated with wind speed, which allowed the use of wind data to model k. We estimate a release of 360 ± 60 Tg C year−1 from Amazonian rivers and streams within a 1.47 million km2 quadrant in the central lowland Amazon. Extrapolating these values to the basin upstream of Óbidos, results in an outgassing of 0.8 Pg C to the atmosphere each year. Our results are a step forward in achieving more accurate gas emission values for Amazonian rivers and their role in the annual carbon budget of the Amazon basin.


Amazon Rivers Carbon cycling CO2 efflux Air–water gas exchange 



Funding for this study was provided by FAPESP Grants 08/58089-9, 10/19091-8 and MCT through LBA, and NASA LBA (NCC5-345 and NCC5-689). We thank especially the members of the Rede Beija Rio sampling network, Kelly Munhoz (FAPEMAT, MT), Soraya Rodrigues da Silva (UFT, TO), Maria Emília Sales (MPEG, PA), Hilândia Brandão (INPA, AM), Alexandra Montebelo, and the numerous students and employees who helped in the field.


  1. Alin SR, Rasera MFFL, Salimon CI, Richey JE, Holtgrieve GW, Krusche AV, Snidvongs A (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res Biogeosci 116:G01009. doi: 10.1029/2010jg001398 Google Scholar
  2. Aufdenkampe AK, Hedges JI, Richey JE, Krusche AV, Llerena CA (2001) Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin. Limnol Oceanogr 46(8):1921–1935CrossRefGoogle Scholar
  3. Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aslto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9(1): 53–60. doi: 10.1890/100014 Google Scholar
  4. Batjes NH (2008) ISRIC-WISE Harmonized Global Soil Profile Dataset (ver. 3.1). In: Report 2008/02. ISRIC-World Soil information, Wageningen, Accessed 11 Jan 2012
  5. Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1(2):95–100CrossRefGoogle Scholar
  6. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2(9):598–600CrossRefGoogle Scholar
  7. Borges AV, Delille B, Schiettecatte LS, Gazeau F, Abril G, Frankignoulle M (2004a) Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol Oceanogr 49(5):1630–1641CrossRefGoogle Scholar
  8. Borges AV, Vanderborght JP, Schiettecatte LS, Gazeau F, Ferron-Smith S, Delille B, Frankignoulle M (2004b) Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries 27(4):593–603CrossRefGoogle Scholar
  9. Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839–842CrossRefGoogle Scholar
  10. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. PNAS 104(47):18866–18870CrossRefGoogle Scholar
  11. Clark JF, Wanninkhof R, Schlosser P, Simpson HJ (1994) Gas-exchange rates in the tidal Hudson river using a dual tracer technique. Tellus Ser B Chem Phys Meteorol 46(4):274–285CrossRefGoogle Scholar
  12. Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52(1):101–110CrossRefGoogle Scholar
  13. Cooper M, Mendes LMS, Silva WLC, Sparovek G (2005) A national soil profile database for Brazil available to international scientists. Soil Sci Soc Am J 69(3):649–652CrossRefGoogle Scholar
  14. Devol AH, Quay PD, Richey JE, Martinelli LA (1987) The role of gas-exchange in the inorganic carbon, oxygen, and Rn-222 budgets of the Amazon River. Limnol Oceanogr 32(1):235–248CrossRefGoogle Scholar
  15. Devol AH, Forsberg BR, Richey JE, Pimentel TP (1995) Seasonal variation in chemical distributions in the Amazon (Solimoes) River—a multiyear time-series. Global Biogeochem Cycle 9(3):307–328CrossRefGoogle Scholar
  16. Ellis EE, Richey JE, Aufdenkampe AK, Krusche AV, Quay PD, Salimon C, da Cunha HB (2012) Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin. Limnol Oceanogr 57(2):527–540CrossRefGoogle Scholar
  17. Elsinger RJ, Moore WS (1983) Gas-exchange in the Pee-Dee River based on Rn-222 evasion. Geophys Res Lett 10(6):443–446CrossRefGoogle Scholar
  18. Engle DL, Melack JM, Doyle RD, Fisher TR (2008) High rates of net primary production and turnover of floating grasses on the Amazon floodplain: implications for aquatic respiration and regional CO2 flux. Glob Change Biol 14(2):369–381CrossRefGoogle Scholar
  19. Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, DeLille B, Libert E, Theate JM (1998) Carbon dioxide emission from European estuaries. Science 282(5388):434–436CrossRefGoogle Scholar
  20. Guerin F, Abril G, Serca D, Delon C, Richard S, Delmas R, Tremblay A, Varfalvy L (2007) Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J Marine Syst 66(1–4):161–172CrossRefGoogle Scholar
  21. Hess LL, Melack JM, Novo E, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens Environ 87(4):404–428CrossRefGoogle Scholar
  22. Hesslein RH, Rudd JWM, Kelly C, Ramlal P, Hallard KA (1991) Carbon-dioxide pressure in surface waters of canadian lakes. Air–Water Mass Transfer: Selected Papers from the Second International Symposium on Gas Transfer at Water Surfaces, 413–431Google Scholar
  23. Hida N, Maia JG, Hiraoka M, Shimmi O, Mizutani N (1997) Notes on annual and daily water level changes at Breves and Caxiuanã, Amazon Estuary. In: Lisboa PLB (ed) Caxiuanã. Museu Paraense Emilio Goeldi, Belém, pp 97–103Google Scholar
  24. Ho DT, Bliven LF, Wanninkhof R, Schlosser P (1997) The effect of rain on air-water gas exchange. Tellus Ser B Chem Phys Meteorol 49(2):149–158CrossRefGoogle Scholar
  25. Ho DT, Schlosser P, Caplow T (2002) Determination of longitudinal dispersion coefficient and net advection in the tidal Hudson River with a large-scale, high resolution SF6 tracer release experiment. Environ Sci Technol 36(15):3234–3241CrossRefGoogle Scholar
  26. Ho DT, Veron F, Harrison E, Bliven LF, Scott N, McGillis WR (2007) The combined effect of rain and wind on air-water gas exchange: a feasibility study. J Marine Syst 66(1–4):150–160CrossRefGoogle Scholar
  27. Hope D, Palmer SM, Billett MF, Dawson JJC (2004) Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil–stream linkages. Hydrol Process 18:3255–3275CrossRefGoogle Scholar
  28. Humborg C, Morth CM, Sundbom M, Borg H, Blenckner T, Giesler R, Ittekkot V (2010) CO2 supersaturation along the aquatic conduit in Swedish wathersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Glob Change Biol 16:1966–1978CrossRefGoogle Scholar
  29. Johnson MS, Lehmann J, Couto EG, Novaes JP, Riha SJ (2006) DOC and DIC in flowpaths of Amazonian headwater catchments with hydrologically contrasting soils. Biogeochemistry 81(1):45–57CrossRefGoogle Scholar
  30. Johnson MS, Lehmann J, Riha SJ, Krusche AV, Richey JE, Ometto J, Couto EG (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35(17):L17401. doi: 17410.11029/12008gl034619 CrossRefGoogle Scholar
  31. Koné YJM, Abril G, Kouadio KN, Delille B, Borges AV (2009) Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa). Estuar Coast 32:246–260CrossRefGoogle Scholar
  32. Kothandaraman V (1971) Effects of contaminants on reparation rates in river water. Water Pollut Control Fed 43:806–817Google Scholar
  33. Kremer JN, Reischauer A, D’Avanzo C (2003) Estuary-specific variation in the air-water gas exchange coefficient for oxygen. Estuaries 26(4A):829–836CrossRefGoogle Scholar
  34. Liebman B, Marengo JA (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J Clim 14(22):4308–4318CrossRefGoogle Scholar
  35. MacIntyre S, Wanninkhof R, Chanton JP (1995) Trace gas exchange across air-water inteface in freshwater and coastal marine environments. In: Matson PA, Harris RC (eds) Biogenic Trace Gases: Measuring Emissions from Soil and Water, Methods in Ecology. Blackwell Science Ltd, Cambridge, pp 52–97Google Scholar
  36. Marino R, Howarth RW (1993) Atmospheric oxygen-exchange in the Hudson River—dome measurements and comparison with other natural waters. Estuaries 16(3A):433–445CrossRefGoogle Scholar
  37. Martin O, Probst JL (1991) Biogeochemistry of major African rivers: carbon and mineral transport. In: Degens ET, Kempe S and Richey JE (eds) Biogeochemistry of major world rivers. SCOPE, vol 42. Wiley, Chichester, p 127–156Google Scholar
  38. Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005a) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436(7050):538–541CrossRefGoogle Scholar
  39. Mayorga E, Logsdon MG, Ballester MVR, Richey JE (2005b) Estimating cell-to-cell land surface drainage paths from digital channel networks, with an application to the Amazon basin. J Hydrol 315(1–4):167–182CrossRefGoogle Scholar
  40. Melack JM, Forsberg BR (2001) Biogeochemistry of Amazon floodplain lakes and associated wetlands. In: McClain ME, Victoria RL, Richey JE (eds) The Biogeochemistry of the Amazon Basin and its role in a changing world. Oxford University Press, Oxford, pp 235–276Google Scholar
  41. Melack JM, Finzi AC, Siegel D, MacIntyre S, Nelson CE, Aufdenkampe AK, Pace ML (2011) Improving biogeochemical knowledge through technological innovation. Front Ecol Environ 9(1):37–43. doi: 10.1890/100004 CrossRefGoogle Scholar
  42. Nabout JC, Nogueira IS, Oliveira LG (2006) Phytoplankton community of floodplain lakes of the Araguaia River, Brazil, in the rainy and dry seasons. J Plankton Res 28(2):181–193CrossRefGoogle Scholar
  43. Oke TR (1988) Boundary Layer Climates. Routledge, Boca RatonGoogle Scholar
  44. Quay PD, Wilbur DO, Richey JE, Hedges JI, Devol AH, Victoria R (1992) Carbon cycling in the Amazon River—implications from the C-13 compositions of particles and solutes. Limnol Oceanogr 37(4):857–871CrossRefGoogle Scholar
  45. Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8(6):1415–1440CrossRefGoogle Scholar
  46. Rasera MFFL, Ballester MVR, Krusche AV, Salimon C, Montebelo LA, Alin SR, Victoria RL, Richey JE (2008) Estimating the surface area of small rivers in the southwestern Amazon and their role in CO2 outgassing. Earth Interact 12:1–16CrossRefGoogle Scholar
  47. Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24(2):312–317CrossRefGoogle Scholar
  48. Raymond PA, Caraco NF, Cole JJ (1997) Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20(2):381–390CrossRefGoogle Scholar
  49. Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr Fluids and Environ 2:41–53. doi: 10.1215/21573689-1597669 CrossRefGoogle Scholar
  50. Richey JE, Devol AH, Wofsy SC, Victoria R, Riberio MNG (1988) Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnol Oceanogr 33(4):551–561CrossRefGoogle Scholar
  51. Richey JE, Hedges JI, Devol AH, Quay PD, Victoria R, Martinelli L, Forsberg BR (1990) Biogeochemistry of carbon in the Amazon River. Limnol Oceanogr 35(2):352–371CrossRefGoogle Scholar
  52. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416(6881):617–620CrossRefGoogle Scholar
  53. Richey JE, Krusche AV, Johnson MS, Cunha HB, Ballester MV (2009) The role of rivers in the regional carbon balance. In: Keller M, Bustamante M, Gash J, Dias PS (eds) Amazonia and global change. American Geophysical Union, Washington, pp 489–504CrossRefGoogle Scholar
  54. Sioli H (1950) Das wasser im Amazonasgebiet. Forsch Fortschr 26:274–280Google Scholar
  55. Sioli H (1984) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Junk, W, DordrechtGoogle Scholar
  56. Skirrow G (1975) The dissolved gases—carbon dioxide. In: Riley JP, Skirrow G (eds) Chemical oceanography. Academic Press, London, pp 1–192Google Scholar
  57. Vachon D, Prairie YT, Cole JJ (2010) The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55(4):1723–1732CrossRefGoogle Scholar
  58. Wanninkhof R (1992) Relationship between wind-speed and gas-exchange over the ocean. J Geophys Res Oceans 97(C5):7373–7382CrossRefGoogle Scholar
  59. Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR (2009) Advances in quantifying air–sea gas exchange and environmental forcing. Annu Rev Marine Sci 1:213–244CrossRefGoogle Scholar
  60. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chem 2:203–215CrossRefGoogle Scholar
  61. Wissmar RC, Richey JE, Stallard RF, Edmond JM (1981) Plankton metabolism and carbon processes in the Amazon River, its tributaries, and floodplain waters, Peru-Brazil, May–June 1977. Ecology 62(6):1622–1633CrossRefGoogle Scholar
  62. Yao GR, Gao QZ, Wang ZG, Huang XK, He T, Zhang YL, Jiao SL, Ding J (2007) Dynamics Of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Sci Total Environ 376(1–3):255–266CrossRefGoogle Scholar
  63. Zappa C, Raymond PA, Terray EA, McGillis WR (2003) Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26(6):1401–1415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maria de Fátima F. L. Rasera
    • 1
    Email author
  • Alex V. Krusche
    • 1
  • Jeffrey E. Richey
    • 2
  • Maria V. R. Ballester
    • 1
  • Reynaldo L. Victória
    • 1
  1. 1.Environmental Analysis and Geoprocessing LaboratoryCenter for Nuclear Energy in Agriculture, University of São PauloPiracicabaBrazil
  2. 2.School of Oceanography, University of WashingtonSeattleUSA

Personalised recommendations