Advertisement

Biogeochemistry

, Volume 116, Issue 1–3, pp 199–214 | Cite as

Budget of methane emissions from soils, livestock and the river network at the regional scale of the Seine basin (France)

  • Josette GarnierEmail author
  • Guillaume Vilain
  • Marie Silvestre
  • Gilles Billen
  • Stefan Jehanno
  • Dominique Poirier
  • Anun Martinez
  • Céline Decuq
  • Pierre Cellier
  • Gwenaël Abril
Article

Abstract

We used various approaches to establish a comprehensive budget of methane (CH4) emissions from the Seine basin, including direct emissions from livestock and soils as well as emissions from the drainage network. For the direct emissions from livestock, we used official livestock census numbers and emission factors (CH4 emitted by each animal species per head per year) available in the literature. For the emissions from soils, we based our estimates on experimental measurements in closed chambers installed on different agricultural plots, forest, and grasslands in 2008 and 2009. The results were extrapolated to the whole Seine basin, including grassland, cropland, and forest soil distributions in the Seine basin. The CH4 emissions from the Seine drainage network were also based on measurements of sampled waters in various rivers and streams (from headwaters to estuary) during different seasons in 2007, 2008, and 2010. After chemical analysis of CH4 concentrations in the water samples using a gas chromatographic technique and calculation of the CH4 supersaturation by stream order in rivers of the Seine basin (from 1 to 8) and by season we could estimate the CH4 emissions for the whole water surface area of the Seine drainage network. The livestock of the Seine basin produce CH4 emissions amounting to 166 × 106 kg C year−1, among which cattle are responsible for 85 %. The total CH4 emission from the Seine drainage network was estimated at 0.3 × 106 kg C year−1, large rivers being responsible for the largest proportion. Ebullition could account for an additional 0.2 × 106 kg C year−1. Soils of the Seine basin are a net sink for CH4 (9.4 × 106 kg C year−1). The water and soils fluxes are low with regard to emissions by livestock, but domestic waste, through landfills, could contribute an additional 40 × 106 kg C year−1.

Keywords

CH4 emissions Budgets Cropland Livestock Rivers Seine basin 

Notes

Acknowledgments

This work was undertaken within the framework of the PIREN-Seine programme (Programme Interdisplinaire de Recherche en Environnement) and the FIRE (Fédération Ile-de-France de Recherche en Environnement). We thank François Gilloots for giving us admission to his property. We thank Benjamin Mercier and Olivier Tronquart for their kind technical field assistance. Reviewers are kindly acknowledged for the suggestions and comments that greatly improve the manuscript.

Supplementary material

10533_2013_9845_MOESM1_ESM.doc (31 kb)
Supplementary material 1 (DOC 31 kb)

References

  1. Abe DS, Adams DD, Sidagis Galli CV, Sikar E, Tundisi JG (2005) Sediment carbon gases (methane and carbon dioxide) in the Lobo-Broa Reservoir, São Paulo State, Brazil: concentrations and diffuse emission fluxes for carbon budget considerations. Lakes Reservoirs Res Manage 10:201–209CrossRefGoogle Scholar
  2. Abril G, Iversen N (2002) Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark). Mar Ecol Prog Ser 230:171–181CrossRefGoogle Scholar
  3. Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, dos Santos MA, Matvienko B (2005). Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob Biogeochem Cycles. 19:GB4007. doi: 10.1029/2005GB002457
  4. Abril G, Commarieu M-V, Guérin F (2007) Enhanced methane oxidation in an estuarine turbidity maximum. Limnol Oceanogr 52:470–475CrossRefGoogle Scholar
  5. Abril G, Commarieu MV, Sottolichio A, Bretel P, Guérin F (2009) Turbidity limits gas exchange in a large macrotidal estuary. Estuar Coast Shelf Sci 83:342–348Google Scholar
  6. Allard V, Soussana J-F, Falcimagnea R, Berbigierb P, Bonnefond JM, Ceschia E, D’hour P, Hénault C, Laville P, Martin C, Pinarès-Patino C (2007) The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agric Ecosyst Environ 121:47–58CrossRefGoogle Scholar
  7. Bastviken D, Ejlertsson J, Tranvik L (2002) Measurement of methane oxidation in lakes: a comparison of methods. Environ Sci Technol 36:3354–3361CrossRefGoogle Scholar
  8. Bastviken D, Cole J, Pace M, Tranvik L (2004), Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles, 18:GB4009, doi: 10.1029/2004GB002238. doi: 10.1126/science.1196808
  9. Bastviken D, Tranvik L, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science. 331:50CrossRefGoogle Scholar
  10. Baulch HM, Dillon PJ, Maranger R, Schiff SL (2011) Diffusive and ebullitive transport of methane and nitrous oxide from streams: are bubble-mediated fluxes important? J Geophys Res 116:G04028. doi: 10.1029/2011JG001656 Google Scholar
  11. Beaulieu JJ, Shuster WD, Rebholz JA (2012) Controls on gas transfer velocities in a large river. J Geophysical Res. (117):G02007. doi: 10.1029/2011JG001794
  12. Billen G, Garnier J, Némery J, Sebilo M, Sferratore A, Barles S, Benoit P, Benoit M (2007) Nutrient transfers through the Seine river continuum: mechanisms and long term trends. Sci Total Environ 375:80–97CrossRefGoogle Scholar
  13. Boadi D, Benchaar C, Chiquette J, Massé D (2004) Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can J Anim Sci 84:319–335CrossRefGoogle Scholar
  14. Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277CrossRefGoogle Scholar
  15. Borges AV, Abril G (2012) Carbon dioxide and methane dynamics in estuaries. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science, vol 5. Academic Press, Waltham, pp 119–161Google Scholar
  16. Borges A, Vanderborght JP, Schiettecatte LS, Gazeau F, Ferron-Smith S, Delille B, Frankignoulle M (2004) Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the scheldt). Estuaries 27:593–603CrossRefGoogle Scholar
  17. Cébron A, Garnier J, Billen G (2005) Nitrous oxide production and nitrification kinetics by bacteria communities naturally present in river water (the lower Seine, France). Aquat Microb Ecol 41:25–38CrossRefGoogle Scholar
  18. Chadwick DR, Pain BF (1997) Methane fluxes following slurry applications to grassland soils: laboratory experiments. Agric Ecosyst Environ 63:51–60CrossRefGoogle Scholar
  19. CITEPA (2012). Rapport National d’inventaire pour la France au titre de la convention cadre des nations unies sur les changements climatiques et du protocole de Kyoto. Rapport CCNUCC, 218 p+ Annexes. http://citepa.org/publications/Inventaires.htm. Accessed 22 Jul 2012
  20. Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202CrossRefGoogle Scholar
  21. Crutzen PJ, Aselmann I, Seiler W (1986) Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus 38B:271–284CrossRefGoogle Scholar
  22. Curie F, Gaillard S, Ducharne A, Bendjoudi H (2007) Geomorphological methods to characterise wetlands at the scale of the Seine watershed. Sci Total Environ 375:59–68CrossRefGoogle Scholar
  23. DelSontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B (2010) Extreme methane emissions from a swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–2425CrossRefGoogle Scholar
  24. Deppe M, Knorr K-H, McKnight DM, Blodau C (2010) Effects of short-term drying and irrigation on CO2 and CH4 production and emission from mesocosms of a northern bog and an alpine fen. Biogeochemistry. doi: 10.1007/s10533-010-9406-9 Google Scholar
  25. Duchemin E, Lucotte M, Canuel R, Chambeland A (1995) Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the Boreal region. Glob Biogeochem Cycles 9:529–540CrossRefGoogle Scholar
  26. Eller G, Kanel LK, Krüger M (2005) Conccurrence of aerobic and anaerobic methane oxidation in the water column of lake Plusssee. Appl Environ Microbiol 71:8925–8928CrossRefGoogle Scholar
  27. Etcheber H, Taillez A, Abril G, Garnier J, Servais P, Moatar F, Commarieu MV (2007) Particulate organic carbon in the estuarine turbidity maxima of the gironde, loire and seine estuaries: origin and lability. Hydrobiologia 588:245–259CrossRefGoogle Scholar
  28. Eugster W, DelSontro T, Sobek S (2011) Eddy covariance flux measurements confirm extreme CH4 emissions from a swiss hydropower reservoir and resolve their short-term variability. Biogeosci Discuss 8:5019–5055. doi: 10.5194/bgd-8-5019-2011 CrossRefGoogle Scholar
  29. Galy-Lacaux C, Delmas R, Jambert C, Dumestre JF, Labroue L, Richard S, Gosse P (1997) Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guiana. Glob Biogeochem Cycles 11:471–483CrossRefGoogle Scholar
  30. Garnier J, Billen G, Coste M (1995) Seasonnal succession of diatoms and chlorophyceae in the drainage network of the river Seine: observations and modelling. Limnol Oceanogr 40:750–765CrossRefGoogle Scholar
  31. Garnier J, Némery J, Billen G, Théry S (2005) Nutrient dynamics and control of eutrophication in the Marne River system: modelling the role of exchangeable phosphorus. J Hydrol 304:397–412CrossRefGoogle Scholar
  32. Garnier J, Cébron A, Tallec G, Billen G, Sebilo M, Martinez A (2006) Nitrogen behaviour and nitrous oxide emission in the tidal Seine River estuary (France) as influenced by human activities in the upstream watershed. Biogeochemistry 77:305–326CrossRefGoogle Scholar
  33. Garnier J, Billen G, Even S, Etcheber H, Servais P (2008) Organic matter dynamics and budgets in the maximum turbidity zone of the Seine Estuary (France). Estuarine Coast Schelf Sci 77:150–162. doi: 10.1016/j.ecss.2007.09.019 CrossRefGoogle Scholar
  34. Garnier J, Billen G, Vilain G, Martinez A, Silvestre M, Mounier E, Toche F (2009) Nitrous oxide (N2O) in the Seine river and basin: observations and budgets. Agric Ecosyst Environ 133:223–233CrossRefGoogle Scholar
  35. Guérin F, Abril G (2007) Significance of pelagic aerobic methane oxidation in the methane and carbon budgets of a tropical reservoir. J Geophys Res. doi: 10.1029/2006JG000393 Google Scholar
  36. Guérin F, Abril G, de Junet A, Bonnet M-P (2008) Anaerobic decomposition of tropical soils and plant material: implication for the CO2 and CH4 budget of the Petit Saut Reservoir. Appl Geochem 23:2272–2283CrossRefGoogle Scholar
  37. Hütsch W (2001) Methane oxidation in non-flooded soils as affected by crop production. Invited paper. Eur J Agron 14:237–260CrossRefGoogle Scholar
  38. Inubushi K, Otake S, Furukawa Y, Shibasaki N, Ali M, Itang AM, Tsuruta H (2005) Factors influencing methane emission from peat soils: comparison of tropical and temperate wetlands. Nutr Cycl Agroecosyst 71:93–99CrossRefGoogle Scholar
  39. IPCC (1996) Intergovernmental Panel on Climate Change. XII summary for policy makers. In: Houghton IT, Meira F, Callander LG, Harris BA, Kattenberg A, Maskell K (eds) Climate change 1995: the scientific basis of climate change. Cambridge University Press, Cambridge, p 572Google Scholar
  40. IPCC (2006). Intergovernmental panel on climate change. Guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. In: Dong H, Mangino J, McAllister TA, Hatfield JL, Johnson DE, Lassey KR, Aparecida de Lima M, Romanovskaya A (eds) Agriculture, forestry and other land use, vol 4, Chapter 10. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html. Accessed 29 April 2013
  41. IPCC (2007). Climate Change 2007: Mitigation. Contribution of Working Group III to the fourth assessment report of the intergovernmental panel on climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Cambridge University Press, CambridgeGoogle Scholar
  42. Jamali H, Livesley SJ, Dawes TZ, Cook GD, Hutley LB, Arndt SK (2011) Diurnal and seasonal variations in CH4 flux from termite mounds in tropical savannas of the Northern Territory, Australia. Agric For Meteorol 151:1471–1479CrossRefGoogle Scholar
  43. Jones JB, Mulholland PJ (1998) Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry 40:57–72CrossRefGoogle Scholar
  44. Khalil MAK, Rasmussen RA (1989) Climate-induced feedbacks for the global cycles of methane and nitrous oxide. Tellus 418:554–559Google Scholar
  45. Kirchgessner M, Windisch W, Müller HL (1995). Nutritional factors for the quantification of methane production. In: Engelhardt WV, Leonhard-Marek S, Breves G, Giesecke D (eds) Ruminant physiology: digestion, metabolism, Growth and reproduction. Proceedings VIII. International symposium on ruminant physiology, pp 333–348Google Scholar
  46. Knowles R (1982). Denitrification. Microbiological reviews, vol. 46, p 43–70, No. 10146-0749/82/010043-28$02.00/0Google Scholar
  47. Knowles R (2005) Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecol Eng 24(2005):441–446CrossRefGoogle Scholar
  48. Koné YJM, Abril G, Delille B, Borges AV (2010) Seasonal variability of methane in the rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry 100:21–37CrossRefGoogle Scholar
  49. Kool DM, Dolfing J, Wrage N, Van Groenigen JW (2011) Nitrifier denitrification as a distinct and significant source of nitrousoxide from soil. Soil Biol Biochem 43:174–178CrossRefGoogle Scholar
  50. Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50CrossRefGoogle Scholar
  51. Liebig MA, Kronberg SL, Gross JR (2008) Effects of normal and altered cattle urine on short-term greenhouse gas flux from mixed-grass prairie in the Northern Great Plains. Agric Ecosyst Environ 125:57–64CrossRefGoogle Scholar
  52. Livingston GP, Hutchinson GL (1995) Enclosure-based measurement of trace gas-exchange: applications and sources of error. In: Matson PA, Harris RC (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell, London, pp 14–51Google Scholar
  53. Middelburg JJ, Nieuwenhuize J, Iversen N, Hoegh N, de Wilde H, Helder W, Seifert R, Christof O (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59:95–119CrossRefGoogle Scholar
  54. Monteny G-J, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ 112:163–170CrossRefGoogle Scholar
  55. Mosier AR, Parton WJ, Phongpan S (1998) Long-term large N and immediate small N addition effects on trace gas fluxes in the Colorado shortgrass steppe. Biol Fertil Soils 28:44–50CrossRefGoogle Scholar
  56. Nirmal Kumar JI, Viyol SV (2009) Short-term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India. Paddy Water Environ 7:11–16. doi: 10.1007/s10333-008-0147-5 CrossRefGoogle Scholar
  57. Olesen JE, Schelde K, Weiske A, Weisbjerg MR, Asman WAH, Djurhuus J (2006) Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agric Ecosyst Environ 112:207–220CrossRefGoogle Scholar
  58. Pinares-Patino CS, D’Hour P, Jouany J-P, Martin C (2007) Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agric Ecosyst Environ 121:30–46CrossRefGoogle Scholar
  59. Rajkumar AN, Barnes J, Ramesh R, Purvaja R, Upstill-Goddard RC (2008) Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Mar Pollut Bull 56:2043–2051CrossRefGoogle Scholar
  60. Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D (2012). Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr: Fluids Environ (2) 41–53. doi  10.1215/21573689-1597669
  61. Reeburgh WS (2007) Global methane biogeochemistry. In: Keeling RF (ed) The atmosphere. Treatise on geochemistry. Elsevier, Oxford, pp 1–32CrossRefGoogle Scholar
  62. Schubert CJ, Lucas FS, Durisch-Kaiser E, Stierli R, Diem T, Scheidegger O, Vazquez F, Müller B (2010) Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland) Aquat. Sci. 72:455–466. doi: 10.1007/s00027-010-0148-5 Google Scholar
  63. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471Google Scholar
  64. Soussana JF, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Manag 20:219–2130CrossRefGoogle Scholar
  65. Soussana JF, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel A, Raschi A, Baronti S, Rees RM, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z, Valentini R (2007) Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grasslandsites. Agric Ecosyst Environ 121:121–134CrossRefGoogle Scholar
  66. Strahler AH (1957) Quantitative analysis of watershed geomorphology. Geophys Union Trans 38:913–920CrossRefGoogle Scholar
  67. Tallec G, Garnier J, Gousailles M (2006) Nitrogen removal in a wastewater treatment plant through biofilters: nitrous oxide emissions during nitrification and denitrification. Bioprocess Biosyst Eng 29:323–333CrossRefGoogle Scholar
  68. Thiere G, Stadmark J, Weisner SEB (2011) Nitrogen retention versus methane emission: environmental benefits and risks of large-scale wetland creation. Ecol Eng 37:6–15CrossRefGoogle Scholar
  69. Thieu V, Billen G, Garnier J (2009) Nutrient transfer in three contrasting NW European watersheds: the Seine, Somme, and Scheldt Rivers. A comparative application of the Seneque/Riverstrahler model. Water Res 43:1740–1754CrossRefGoogle Scholar
  70. Vergé X, Dyer JA, Desjardins RL, Worth D (2007) Greenhouse gas emissions from the Canadian dairy industry during 2001. Agric Syst 94:683–693CrossRefGoogle Scholar
  71. Vermorel M, Jouany J, Eugène M, Sauvant D, Noblet J, Dourmad J (2008) Evaluation quantitative des émissions de méthane entérique par les animaux d’élevage en 2007 en France. INRA Prod Anim 21:403–418Google Scholar
  72. Vilain G, Garnier J, Tallec G, Cellier P (2010) Effect of slope position and land use on nitrous oxide (N2O) emissions (Seine Basin, France). Agric For Meteorol 150:1192–1202CrossRefGoogle Scholar
  73. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382CrossRefGoogle Scholar
  74. Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210CrossRefGoogle Scholar
  75. Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80CrossRefGoogle Scholar
  76. Zhou JB, Jiang MM, Chen GQ (2007) Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949–2003. Energy Policy 35:3759–3767CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Josette Garnier
    • 1
    • 2
    Email author
  • Guillaume Vilain
    • 2
  • Marie Silvestre
    • 1
    • 2
  • Gilles Billen
    • 1
    • 2
  • Stefan Jehanno
    • 1
  • Dominique Poirier
    • 3
  • Anun Martinez
    • 1
  • Céline Decuq
    • 4
  • Pierre Cellier
    • 4
  • Gwenaël Abril
    • 3
  1. 1.UPMC, UMR 7619 SisypheParisFrance
  2. 2.CNRS, UMR 7619 SisypheParisFrance
  3. 3.CNRS UMR 5805 EPOC, OASU - Université Bordeaux 1Talence CEDEXFrance
  4. 4.INRA Unité Mixte de Recherche INRA/AgroParisTech Environnement et Grandes CulturesThiverval – GrignonFrance

Personalised recommendations