, Volume 113, Issue 1–3, pp 573–593 | Cite as

Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia

  • L. S. Shirokova
  • O. S. PokrovskyEmail author
  • S. N. Kirpotin
  • C. Desmukh
  • B. G. Pokrovsky
  • S. Audry
  • J. Viers


Active processes of permafrost thaw in Western Siberia increase the number of soil subsidencies, thermokarst lakes and thaw ponds. In continuous permafrost zones, this process promotes soil carbon mobilisation to water reservoirs, as well as organic matter (OM) biodegradation, which produces a permanent flux of carbon dioxide (CO2) to the atmosphere. At the same time, the biogeochemical evolution of aquatic ecosystems situated in the transition zone between continuous permafrost and permafrost-free terrain remains poorly known. In order to better understand the biogeochemical processes that occur in thaw ponds and lakes located in discontinuous permafrost zones, we studied ~30 small (1–100,000 m2) shallow (<1 m depth) lakes and ponds formed as a result of permafrost subsidence and thaw of the palsa bog located in the transition zone between the tundra and forest-tundra (central part of Western Siberia). There is a significant increase in dissolved CO2 and methane (CH4) concentration with decreasing water body surface area, with the largest supersaturation with respect to atmospheric CO2 and CH4 in small (<100 m2) permafrost depressions filled with thaw water. Dissolved organic carbon (DOC), conductivity, and metal concentrations also progressively increase from large lakes to thaw ponds and depressions. As such, small water bodies with surface areas of 1–100 m2 that are not accounted for in the existing lake and pond databases may significantly contribute to CO2 and CH4 fluxes to the atmosphere, as well as to the stocks of dissolved trace elements and organic carbon. In situ lake water incubation experiments yielded negligible primary productivity but significant oxygen consumption linked to the mineralisation rate of dissolved OM by heterotrophic bacterioplankton, which produce a net CO2 flux to the atmosphere of 5 ± 2.5 mol C m2 year−1. The most significant result of this study, which has long-term consequences on our prediction of aquatic ecosystem development in the course of permafrost degradation is CO2, CH4, and DOC concentrations increase with decreasing lake age and size. As a consequence, upon future permafrost thaw, the increase in the number of small water bodies, accompanied by the drainage of large thermokarst lakes to the hydrological network, will likely favour (i) the increase of DOC and colloidal metal stocks in surface aquatic systems, and (ii) the enhancement of CO2 and CH4 fluxes from the water surface to the atmosphere. According to a conservative estimation that considers that the total area occupied by water bodies in Western Siberia will not change, this increase in stocks and fluxes could be as high as a factor of ten.


Permafrost CO2 CH4 Lake Thermokarst Trace elements Colloids 



We are grateful to three anonymous reviewers for their insightful and helpful comments. This work was supported by the ANR “Arctic Metals”, Grant of Russian Federation “Kadry” FTSP 5.1, and by GDRI CAR-WET-SIB.

Supplementary material

10533_2012_9790_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1598 kb)
10533_2012_9790_MOESM2_ESM.pdf (95 kb)
Supplementary material 2 (PDF 94 kb)
10533_2012_9790_MOESM3_ESM.pdf (43 kb)
Supplementary material 3 (PDF 42 kb)


  1. Achterberg EP, Van den Berg CMG, Boussemart M, Davison W (1997) Speciation and cycling of trace metals in Esthwaite Water: a productive English lake with seasonal deep-water anoxia. Geochim Cosmochim Acta 61:5233–5253CrossRefGoogle Scholar
  2. Andersson K, Dahlqvist R, Turner D, Stolpe B, Larsson T, Ingri J, Andersson P (2006) Colloidal rare earth elements in a boreal river: changing sources and distributions during the spring flood. Geochim Cosmochim Acta 70:3261–3274CrossRefGoogle Scholar
  3. Audry S, Pokrovsky OS, Shirokova LS, Kirpotin SN, Dupré B (2011) Organic matter mineralization and trace element post-depositional redistribution in Western Siberia thermokarst lake sediments. Biogeosciences 8:3341–3358. doi: 10.5194/bg-8-3341-2011 CrossRefGoogle Scholar
  4. Bagard ML, Chabaux F, Pokrovsky OS, Prokushkin AS, Viers J, Dupré B, Stille P (2011) Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas. Geochim Cosmochim Acta 75:3335–3357CrossRefGoogle Scholar
  5. Balcarczyk KL, Jones JB Jr, Jaffé R, Maie N (2009) Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 94:255–270. doi: 10.1007/s10533-009-9324-x Google Scholar
  6. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: Dependence on lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles, 18:GB4009. doi: 10.1029/2004GB002238
  7. Bertilsson S, Tranvik LJ (1998) Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr 43(5):885–895CrossRefGoogle Scholar
  8. Casper P, Maberly SC, Grahame H, Hall GH, Finlay BJ (2000) Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49:1–19CrossRefGoogle Scholar
  9. Christensen TR, Johansson T, Akerman HJ, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31:L04501. doi: 10.1029/2003GL018680 CrossRefGoogle Scholar
  10. Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570CrossRefGoogle Scholar
  11. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184CrossRefGoogle Scholar
  12. Dahlqvist R, Benedetti MF, Andersson K, Turner D, Larsson T, Stolpe B, Ingri J (2004) Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon rivers. Geochim Cosmochim Acta 68:4059–4075CrossRefGoogle Scholar
  13. De Haan H (1993) Solar UV-light penetration and photodegradation of humic substances in peaty lake water. Limnol Oceanogr 38:1072–1077CrossRefGoogle Scholar
  14. del Giorgio PA, Peters RH (1994) Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnol Oceanogr 39(4):772–787CrossRefGoogle Scholar
  15. Desyatkin RV (2008) Soil formation in thermokarst basin—alases of cryolithozone. Nauka, Novosobirsk, pp 43–52Google Scholar
  16. Desyatkin AR, Takakai F, Fedorov P, Nikolaeva MC, Desyatkin RV, Hatano R (2009) CH4 emission from different stages of thermokarst formation in Central Yakutia, East Siberia. Soil Sci Plant Nutr 55:558–570. doi: 10.1111/j.1747-0765.2009.00389 CrossRefGoogle Scholar
  17. Dneprovskaya VP, Bryksina NA, Polischuk YuM (2009) Study of thermokarst changes in discontinuous zone of west-Siberian permafrost based on space images. Study of the Earth from the Space (Issledovanie Zemli is Kosmosa) No. 4, 88–96Google Scholar
  18. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397CrossRefGoogle Scholar
  19. Emmerton CA, Lesack LFW, Marsh P (2007) Lake abundance, potential water storage, and habitat distribution in the Macknezie River Delta, western Canadian Arctic. Water Resour Res 43:W05419. doi: 10.1029/2006WR005139 CrossRefGoogle Scholar
  20. Frey KE, Smith LC (2005) Amplified carbon release from vast West Siberian peatlands by 2100. Geophys Res Lett 32:L09401. doi: 10.1029/2004GL022025 CrossRefGoogle Scholar
  21. Frey KE, Siegel DI, Smith LC (2007) Geochemistry of west Siberian streams and their potential response to permafrost degradation. Water Resour Res 43:W03406. doi: 10.1029/2006WR004902 CrossRefGoogle Scholar
  22. Fritz P, Fontes JC (1980) Handbook of environmental isotope geochemistry, v. 1. ElsevierGoogle Scholar
  23. Galimov EM, Kodina LA, Stepanets OV, Korobeinik GS (2006) Biogeochemistry of the Russian Arctic. Kara Sea: research results under the SIRRO project, 1995–2003. Geochem Int 44(11):1053–1104Google Scholar
  24. Granéli W, Lindell M, Tranvik L (1996) Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol Oceanogr 41(4):698–706CrossRefGoogle Scholar
  25. Guo L, MacDonald RW (2006) Source and transport of terrigenous organic matter in the upper Yukon River: evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Global Biogeochem Cycles 20:GB2011. doi: 10.1029/2005GB002593
  26. Hamilton-Taylor J, Davison W, Morfett K (1996) The biogeochemical cycling of Zn, Cu, Fe, Mn, and dissolved organic C in a seasonally anoxic lake. Limnol Oceanogr 41:408–418CrossRefGoogle Scholar
  27. Hamilton-Taylor J, Smith EJ, Davison W, Sugiyama M (2005) Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behavior in a seasonally anoxic lake. Geochim Cosmochim Acta 69:1947–1960CrossRefGoogle Scholar
  28. Heikkinen JEP, Virtanen T, Huttunen JT, Elsakov V, Martikainen PJ (2004) Carbon balance in east European tundra, Global Biogeochem Cycles 18:GB1023. doi: 10.1029/2003GB002054
  29. Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969CrossRefGoogle Scholar
  30. Hinkel KM, Eisner WR, Bockheim JG, Nelson FE, Peterson KM, Dai X (2003) Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska. Arct Antarct Alp Res 35:291–300CrossRefGoogle Scholar
  31. Hope D, Kratz TK, Riera JL (1996) The relationship between pCO2 and dissolved organic carbon in the surface waters of 27 northern Wisconsin lakes. J Environ Qual 49:1442–1445CrossRefGoogle Scholar
  32. Hornibrook ERC, Longstaffe FJ, Fyfe WS (2000) Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim Cosmochim Acta 64(6):1013–1027CrossRefGoogle Scholar
  33. Ingri J, Widerlund A, Land M, Gustafsson O, Andersson PS, Öhlander B (2000) Temporal variations in the fractionation of the rare earth elements in a boreal river; the role of colloidal particles. Chem Geol 166:23–45CrossRefGoogle Scholar
  34. Intergovernmental Panel on Climate Change (IPCC) (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University PressGoogle Scholar
  35. Johannesson KH, Zhou X (1999) Origin of middle rare earth element enrichments in acid waters of a Canadian High Arctic lake. Geochim Cosmochim Acta 63:153–165CrossRefGoogle Scholar
  36. Jones BM, Grosse G, Arp CD, Jones MC, Walter Anthony KM, Romanovsky VE (2011) Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J Geophys Res 116:G00M03. doi: 10.1029/2011JG001666
  37. Jorgenson MT, Osterkamp TE (2005) Response of boreal ecosystems to varying modes of permafrost degradation. Can J For Res 35:2100–2111CrossRefGoogle Scholar
  38. Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001) Permafrost degradation and ecological changes associated with a warming in central Alaska. Clim Change 48:551–579CrossRefGoogle Scholar
  39. Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmola T, Alm J, Silvola J, Martikainen PJ (2009) Methane dynamics in different boreal lake types. Biogeosciences 6:209–223CrossRefGoogle Scholar
  40. Kelly CA, Fee E, Ramlal PS, Rudd JWM, Hesslein RH, Anema C, Schindler EU (2001) Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnol Oceanogr 46:1054–1064CrossRefGoogle Scholar
  41. Kirpotin SN, Polishchuk YuM, Bryksina NA (2008a) Dynamics of thermokarst lakes areas in continuous and discontinuous cryolithozones of Western Siberia under global warming, Vestnik of Tomsk State University, 311:185–189 (in Russian)Google Scholar
  42. Kirpotin S, Polishchuk Yu, Zakharova E, Shirokova L, Pokrovsky O, Kolmakova M, Dupré B (2008b) One of possible mechanisms of thermokarst lakes drainage in West-Siberian North. Int J Environ Stud 65:631–635CrossRefGoogle Scholar
  43. Kirpotin SN, Berezin A, Bazanov V, Polishchuk Y, Vorobiev S, Mozgolin B, Akerman E, Mironycheva-Tokareva N, Volkova I, Dupré B, Pokrovsky OS, Kouraev A, Zakharova E, Shirokova L, Viers, J, Kolmakova M (2009) West Siberian wetlands as indicator and regulator of climate change on the global scale. Int J Environ Stud Special Issue “Western Siberia”, 66:409–421. doi: 10.1080/00207230902753056 Google Scholar
  44. Kirpotin S, Polishchuk Y, Bryksina N, Sugaipova A, Kouraev A, Zakharova E, Pokrovsky OS, Shirokova LS, Kolmakova M, Manassypov R, Dupré B (2011) West Siberian palsa peatlands: distribution, typology, hydrology, cyclic development, present-day climate-driven changes and impact on CO2 cycle. Int J Environ Stud 68(5):603–623. doi: 10(1080/00207233),2011,593901 CrossRefGoogle Scholar
  45. Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301CrossRefGoogle Scholar
  46. Kling GW, Kipphut GW, Miller MC (1992) The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. Hydrobiologia 240:23–36CrossRefGoogle Scholar
  47. Kortelainen P, Rantakari M, Huttunen JT, Mattsson T, Alm J, Juutinen S, Larmola T, Silvola J, Martikainen PJ (2006) Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Glob Change Biol 12:1554–1567CrossRefGoogle Scholar
  48. Larsen S, Andersen T, Hessen DO (2011) The pCO2 in boreal lakes: organic carbon as a universal predictor? Global Biogeochem Cycles 25:GB2012, doi: 10.1029/2010GB003864
  49. Laurion I, Vincent WF, MacIntyre S, Retamal L, Dupont C, Francus P, Pienitz R (2010) Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr 55:115–133CrossRefGoogle Scholar
  50. Lehner B, Doll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296(1–4):1–22CrossRefGoogle Scholar
  51. Lindell M, Granéli W, Tranvik L (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40:195–199CrossRefGoogle Scholar
  52. Lougheed VL, Butler MG, McEwen DC, Hobbie JE (2011) Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years. Ambio 40:589–599CrossRefGoogle Scholar
  53. Michmerhuizen CM, Striegl RG, McDonald ME (1996) Potential methane emission from north-temperate lakes following ice melt. Limnol Oceanogr 41(5):985–991CrossRefGoogle Scholar
  54. Molot LA, Dillon PJ (1997) Photolytic regulation of dissolved organic carbon in northern lakes. Global Biogeochem Cycles 11(3):357–365CrossRefGoogle Scholar
  55. Olefeldt D, Roulet NT (2012) Effect of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. J Geophys Res 117:G01005. doi: 10.1029/2011JG001819 CrossRefGoogle Scholar
  56. Payette S, Delwaide A, Caccianiga M, Beauchemin M (2004) Accelerated thawing of subarctic permafrost over the last 50 years. Geophys Res Lett 31:L18208. doi: 10.1029/2004GL020358 CrossRefGoogle Scholar
  57. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263CrossRefGoogle Scholar
  58. Pokrovsky OS, Schott J (2002) Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chem Geol 190:141–179CrossRefGoogle Scholar
  59. Pokrovsky OS, Schott J, Dupré B (2006) Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basic terrain in Central Siberia. Geochim Cosmochim Acta 70:3239–3260CrossRefGoogle Scholar
  60. Pokrovsky OS, Viers J, Shirokova LS, Shevchenko VP, Filipov AS, Dupré B (2010) Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in Severnaya Dvina River and its tributary. Chem Geol 273:136–149CrossRefGoogle Scholar
  61. Pokrovsky OS, Shirokova LS, Kirpotin SN, Audry S, Viers J, Dupré B (2011) Effect of permafrost thawing on the organic carbon and metal speciation in thermokarst lakes of western Siberia. Biogeosciences, Special issue Siberian Arctic Land-Shelf-Atmosphere Interface 8:565–583. doi: 10.5194/bg-8-565-2011
  62. Pokrovsky OS, Shirokova LS, Zabelina SA, Vorobieva TY, Moreva OYu, Klimov SI, Chupakov A, Shorina NV, Kokryatskaya NM, Audry S, Viers J, Zouten C, Freydier R (2012) Size fractionation of trace elements in a seasonally stratified boreal lake: control of organic matter and iron colloids. Aquat Geochem 18:115–139CrossRefGoogle Scholar
  63. Prairie YT (2008) Carbocentric limnology: looking back, looking forward. Can J Fish Aquat Sci 65:543–548CrossRefGoogle Scholar
  64. Prokushkin AS, Pokrovsky OS, Shirokova LS, Korets MA, Viers J, Prokushkin SG, Amon R, Guggenberger G, McDowell WH (2011) Sources and export fluxes of dissolved carbon in rivers draining larch-dominated basins of the Central Siberian Plateau. Environ Res Lett 6:045212. doi: 10.1088/1748-9326/6/4/045212
  65. Rantakari M, Kortelainen P (2008) Controls of organic and inorganic carbon in randomly selected boreal lakes in varied catchments. Biogeochemistry 91:151–162. doi: 10.1007/s10533-008-9266-8 CrossRefGoogle Scholar
  66. Rember RD, Trefry JH (2004) Increased concentrations of dissolved trace metals and organic carbon during snowmelt in rivers of the Alaskan Arctic. Geochim Cosmochim Acta 68(3):477–489CrossRefGoogle Scholar
  67. Riordan B, Verbyla D, McGuire AD (2006) Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J Geophys Res 11:G04002. doi: 10.1029/2005JG000150 CrossRefGoogle Scholar
  68. Ripo ME, Huttunen JT, Naumov AV, Chichulin AV, Lapshina ED, Bleuten W, Martikainen PJ (2007) Release of CO2 and CH4 from small wetlands lakes in western Siberia. Tellus 59B:788–796. doi: 10.1111/j.1600-0889.2007.00301.x Google Scholar
  69. Romanenko FA (1999) The dynamics of the lake basins. In: Sidorchuk AYu, Baranov AV (eds) Erosion processes of the central Yamal. St Petersburg CNTDI Press, pp 139–160 (in Russian)Google Scholar
  70. Romanovsky VE, Smith SL, Christiansen HH (2010) Permafrost thermal state in the polar northern hemisphere during International Polar Year 2007–2009: synthesis. Permafrost Periglacial Processes 21:106–116CrossRefGoogle Scholar
  71. Schuur EAG, Bockhein J, Canadell JP, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venesy S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714CrossRefGoogle Scholar
  72. Semiletov IP, Pipko II, Pivovarov NYa, Popov V, Zimov SA, Voropaev YV, Daviodov SP (1996) Atmospheric carbon emission from North Asian Lakes: a factor of global significance. Atmos Environ 30:1657–1671Google Scholar
  73. Shiklomanov AI, Lammers RB (2009) Record Russian river discharge in 2007 and the limits of analysis. Environ Res Lett 4:045015. doi: 10.1088/1748-9326/4/4/045015
  74. Shirokova LS, Pokrovsky OS, Kirpotin SN, Dupré B (2009) Heterotrophic bacterio-plankton in thawed lakes of northern part of Western Siberia controls the CO2 flux to the atmosphere. Int J Environ Stud Special Issue “Western Siberia” 66, N 4:433–445, doi: 10.1080/00207230902758071
  75. Shirokova LS, Pokrovsky OS, Viers J, Klimov SI, Moreva OYu, Zabelina SA, Vorobieva TY, Dupré B (2010) Diurnal variations of trace elements and heterotrophic bacterioplankton concentration in a small boreal lake of the White Sea basin. Ann Limnol Int J Lim 46:67–75. doi: 10.1051/limn/2010011 CrossRefGoogle Scholar
  76. Smith LC, Sheng Y, McDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308:1429CrossRefGoogle Scholar
  77. Smith LC, Beilman DW, Kremenetski KV, Sheng Y, MacDonald GM, Lammers RB, Shiklomanov AI, Lapshina ED (2012) Influence of permafrost on water storage in West Siberian peatlands revealed from a new database of soil properties. Permafrost Periglac Process 23:69–79CrossRefGoogle Scholar
  78. Sobek S, Algesten G, Bergstrom AK, Jansson M, Tranvik LJ (2003) The catchment and climate regulation of pCO2 in boreal lakes. Glob Change Biol 9:630–641CrossRefGoogle Scholar
  79. Stolpe B, Guo L, Shiller AM, Hassellöv M (2010) Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation. Mar Chem 118:119–128CrossRefGoogle Scholar
  80. Stolpe B, Guo L, et al (2011) Geochim Cosmochim Acta, submittedGoogle Scholar
  81. Striegl RG, Kortelainen P, Chanton JP, Wickland KP, Bugna GC, Rantakari M (2001) Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt. Limnol Oceanogr 46:941–945CrossRefGoogle Scholar
  82. Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32:L21413. doi: 10.1029/2005GL024413 CrossRefGoogle Scholar
  83. Summers RS, Cornel PK, Roberts PV (1987) Molecular size distribution and spectroscopic characterization of humic substances. Sci Total Environ 62:27–37CrossRefGoogle Scholar
  84. Teodoru CR, del Giorgio PA, Prairie YT, Camire M (2009) Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada. Global Biogeochem Cycles 23:GB2012. doi: 10.1029/2008GB003404
  85. Tranvik LJ, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314CrossRefGoogle Scholar
  86. Turetsky MR, Wieder RK, Vitt DH (2002) Boreal peatland C fluxes under varying permafrost regimes. Soil Biol Biochem 34:907–912CrossRefGoogle Scholar
  87. Van Hees PAW, Jones DL, Finlay R, Godbold DL, Lundström US (2005) The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37:1–13CrossRefGoogle Scholar
  88. Vasyukova EV, Pokrovsky OS, Viers J, Oliva P, Dupré B, Martin F, Candaudaup F (2010) Trace elements in organic- and iron-rich surficial fluids of the Boreal zone: assessing colloidal forms via dialysis and ultrafiltration. Geochim Cosmochim Acta 74:449–468CrossRefGoogle Scholar
  89. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75CrossRefGoogle Scholar
  90. Walter KM, Smith LC, Chapin FS (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Phil Trans R Soc A 365:1657–1676. doi: 10.1098/rsta.2007.2036 CrossRefGoogle Scholar
  91. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fugii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708CrossRefGoogle Scholar
  92. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215CrossRefGoogle Scholar
  93. Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80CrossRefGoogle Scholar
  94. Zakharova EA, Kouraev AV, Kolmakova MV, Mognard NM, Zemtsov VA, Kirpotin SN (2009) The modern hydrological regime of the northern part of Western Siberia from in situ and satellite observations. Int J Environ Stud 66:447–463. doi: 10.1080/00207230902823578 CrossRefGoogle Scholar
  95. Zimov SA, Voropaev YV, Semiletov IP, Davidov SP, Prosiannikov SF, Chapin FS III, Chapin MC, Trumbore S, Tyler S (1997) North Siberian lakes: a methane source fueled by pleistocene carbon. Science 277:800–802CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • L. S. Shirokova
    • 1
    • 2
  • O. S. Pokrovsky
    • 1
    • 2
    Email author
  • S. N. Kirpotin
    • 3
  • C. Desmukh
    • 4
  • B. G. Pokrovsky
    • 5
  • S. Audry
    • 2
  • J. Viers
    • 2
  1. 1.Institute of Ecological Problems of the North, Russian Academy of ScienceArkhangelskRussia
  2. 2.Géoscience Environnement ToulouseUniversité de Toulouse, CNRS-IRD-OMPToulouseFrance
  3. 3.Tomsk State UniversityTomskRussia
  4. 4.Laboratoire d’Aérologie, Observatoire Midi-PyrénéesUniversité de ToulouseToulouseFrance
  5. 5.Geological Institute, Russian Academy of ScienceMoscowRussia

Personalised recommendations