Biogeochemistry

, Volume 113, Issue 1–3, pp 359–368 | Cite as

Reduction of the temperature sensitivity of soil organic matter decomposition with sustained temperature increase

  • Joseph M. Craine
  • Noah Fierer
  • Kendra K. McLauchlan
  • Andrew J. Elmore
Article

Abstract

The degree to which microbial communities adjust their decomposition of soil carbon over time in response to long-term increases in temperature is one of the key uncertainties in our modeling of the responses of terrestrial ecosystems to warming. To better understand changes in temperature sensitivity of soil microbial communities to long-term increases in soil temperature, we incubated 27 soils for one year with both short-term and long-term manipulations of temperature. In response to increasing temperature short-term from 20 to 30 °C, respiration rates increased more than threefold on average across soils. Yet, in response to long-term increases in temperature, respiration rates increased approximately half as much as they did to short-term increases in temperature. Short-term Q10 of recalcitrant C correlated positively with long-term Q10 measured between 10 and 20 °C, yet there was no relationship between short-term Q10 and long-term Q10 between 20 and 30 °C. In all, under laboratory conditions, it is clear that there is reduction in the temperature sensitivity of decomposition to long-term increases in temperature that disassociate short- and long-term responses of microbial decomposition to temperature. Determining the fate of soil organic matter to increased temperature will not only require further research on the controls and mechanisms of these patterns, but also require models to incorporate responses to both short-term and long-term increases in temperature.

Keywords

Decomposition Temperature Acclimation Soils Carbon 

Supplementary material

10533_2012_9762_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)
10533_2012_9762_MOESM2_ESM.tif (7.6 mb)
Fig. 5 Cumulative respiration of C for 27 soils exposed to long-term differences in temperature (10°C = closed circles, 20°C = open circles, 30°C = closed squares). Lines for each temperature x soil combination are derived from the 2-pool model. Soils at a given temperature for which the two-pool model could not be successfully parameterized do not have a line shown (DOCX 18 kb)

References

  1. Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340CrossRefGoogle Scholar
  2. Alvarez R, Alvarez CR (2000) Soil organic matter pools and their associations with carbon mineralization kinetics. Soil Sci Soc Am J 64(1):184–189CrossRefGoogle Scholar
  3. Anderson JM (1991) The effects of climate change on decomposition processes in grassland and Coniferous forests. Ecol Appl 1(3):326–347CrossRefGoogle Scholar
  4. Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8(7):343–351CrossRefGoogle Scholar
  5. Bol R, Bolger T, Cully R, Little D (2003) Recalcitrant soil organic materials mineralize more efficiently at higher temperatures. J Plant Nutr Soil Sci Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 166(3):300–307CrossRefGoogle Scholar
  6. Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11(12):1316–1327CrossRefGoogle Scholar
  7. Bradford MA, Wallenstein MD, Allison SD, Treseder KK, Frey SD, Watts BW, Davies CA, Maddox TR, Melillo JM, Mohan JE, Reynolds JF (2009) Decreased mass specific respiration under experimental warming is robust to the microbial biomass method employed. Ecol Lett 12(7):E15–E18CrossRefGoogle Scholar
  8. Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM (2008a) Sensitivity of organic matter decomposition to warming varies with its quality. Glob Chang Biol 14(4):868–877CrossRefGoogle Scholar
  9. Conant RT, Steinweg JM, Haddix ML, Paul EA, Plante AF, Six J (2008b) Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance. Ecology 89(9):2384–2391CrossRefGoogle Scholar
  10. Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5:329–359CrossRefGoogle Scholar
  11. Craine JM, Wedin DA, Chapin FS III (1998) Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland. Plant Soil 207(1):77–86CrossRefGoogle Scholar
  12. Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88(8):2105–2113CrossRefGoogle Scholar
  13. Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat Geosci 3:854–857CrossRefGoogle Scholar
  14. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173CrossRefGoogle Scholar
  15. Davidson EA, Janssens IA, Luo YQ (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q(10). Glob Chang Biol 12(2):154–164CrossRefGoogle Scholar
  16. Elliott ET, Heil JW, Kelly EF, Monger HC (1999) Soil structural and other physical properties. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, Oxford, pp 74–88Google Scholar
  17. Fang C, Moncrieff JB (1999) A model for soil CO2 production and transport 1: model development. Agric For Meteorol 95(4):225–236CrossRefGoogle Scholar
  18. Fang C, Moncrieff JB (2001) The dependence of soil CO2 efflux on temperature. Soil Biol Biochem 33(2):155–165CrossRefGoogle Scholar
  19. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35(1):167–176CrossRefGoogle Scholar
  20. Fierer N, Craine J, McLauchlan K, Schimel J (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 85(2):320–326CrossRefGoogle Scholar
  21. Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–280CrossRefGoogle Scholar
  22. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J Clim 19(14):3337–3353CrossRefGoogle Scholar
  23. Gee GW, Bauder JW (1979) Particle-size analysis by hydrometer––simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Sci Soc Am J 43(5):1004–1007CrossRefGoogle Scholar
  24. Haddix ML, Plante AF, Conant RT, Six J, Steinweg JM, Magrini-Bair K, Drijber RA, Morris SJ, Paul EA (2011) The role of soil characteristics on temperature sensitivity of soil organic matter. Soil Sci Soc Am J 75(1):56–68CrossRefGoogle Scholar
  25. Hartley IP, Ineson P (2008) Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biol Biochem 40(7):1567–1574CrossRefGoogle Scholar
  26. Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008) Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol Lett 11(10):1092–1100CrossRefGoogle Scholar
  27. Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2009) No evidence for compensatory thermal adaptation of soil microbial respiration in the study of Bradford et al (2008). Ecol Lett 12(7):E12–E14CrossRefGoogle Scholar
  28. Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New YorkGoogle Scholar
  29. Joergensen RG, Raubuch M (2003) Adenylates in the soil microbial biomass at different temperatures. Soil Biol Biochem 35(8):1063–1069CrossRefGoogle Scholar
  30. Karhu K, Fritze H, Hamalainen K, Vanhala P, Jungner H, Oinonen M, Sonninen E, Tuomi M, Spetz P, Kitunen V, Liski J (2010a) Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology 91(2):370–376CrossRefGoogle Scholar
  31. Karhu K, Fritze H, Tuomi M, Vanhala P, Spetz P, Kitunen V, Liski J (2010b) Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biol Biochem 42(1):72–82CrossRefGoogle Scholar
  32. Lee H, Schuur EAG, Vogel JG (2010) Soil CO2 production in upland Tundra where permafrost is thawing. J Geophys Res Biogeosci 115. doi:10.1029/2008JG000906
  33. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8(3):315–323CrossRefGoogle Scholar
  34. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21(1):1–25CrossRefGoogle Scholar
  35. Oquist MG, Sparrman T, Klemedtsson L, Drotz SH, Grip H, Schleucher J, Nilsson M (2009) Water availability controls microbial temperature responses in frozen soil CO2 production. Glob Chang Biol 15(11):2715–2722CrossRefGoogle Scholar
  36. Robertson GP, Sollins P, Ellis BG, Lajtha K (1999) Exchangeable ions, pH, and cation exchange capacity. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, Oxford, pp 106–114Google Scholar
  37. Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73(1):3–27CrossRefGoogle Scholar
  38. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from Tundra. Nature 459(7246):556–559CrossRefGoogle Scholar
  39. Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8(11):779–790CrossRefGoogle Scholar
  40. Subke JA, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF (2004) Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139(4):551–559CrossRefGoogle Scholar
  41. Vanhala P, Karhu K, Tuomi M, Björklöf K, Fritze H, Hyvärinen H, Liski J (2011) Transplantation of organic surface horizons of boreal soils into warmer regions alters microbiology but not the temperature sensitivity of decomposition. Glob Chang Biol 17(1):538–550CrossRefGoogle Scholar
  42. von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition—what do we know? Biol Fertil Soils 46:1–5CrossRefGoogle Scholar
  43. Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67(2):235–248CrossRefGoogle Scholar
  44. Wardle D, Ghani A (1995) Why is the strength of relationships between pairs of methods for estimating soil microbial biomass often so variable? Soil Biol Biochem 27:821–828CrossRefGoogle Scholar
  45. Wetterstedt JÅM, Persson T, ÅGren GI (2009) Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Glob Chang Biol 16(6):1806–1819CrossRefGoogle Scholar
  46. Zhu BA, Cheng WX (2011) Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition. Glob Chang Biol 17(6):2172–2183CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Joseph M. Craine
    • 1
  • Noah Fierer
    • 2
    • 3
  • Kendra K. McLauchlan
    • 4
  • Andrew J. Elmore
    • 5
  1. 1.Division of BiologyKansas State UniversityManhattanUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  3. 3.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  4. 4.Department of GeographyKansas State UniversityManhattanUSA
  5. 5.Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgUSA

Personalised recommendations