Biogeochemistry

, Volume 113, Issue 1–3, pp 323–339

Depositional fluxes and sources of particulate carbon and nitrogen in natural lakes and a young boreal reservoir in Northern Québec

  • Cristian R. Teodoru
  • Paul A. del Giorgio
  • Yves T. Prairie
  • Annick St-Pierre
Article

Abstract

We investigated the depositional trends of total particles, carbon and nitrogen in a newly created, 600-km2 hydroelectric reservoir in Northern Québec, and compared the results with those observed in lakes of the surrounding region. We show that particulate fluxes exhibit a large degree of spatial heterogeneity in both the reservoir (68–548 mg POC m−2 d−1 and 5–33 mg PN m−2 d−1) and the natural lakes (30–150 mg POC m−2 d−1 and 3–12 mg PN m−2 d−1) and that on average, settling fluxes of the reservoir (211 ± 46 mg POC m−2 d−1 and 14 ± 3 mg PN m−2 d−1) exceeded lake deposition (79 ± 13 mg POC m−2 d−1 and 7 ± 1 mg PN m−2 d−1) by approximately two-fold. Our results also show that the nature of the organic matter reaching the sediments was significantly different between lakes and the reservoir, which can have consequences for benthic metabolism and the long-term storage. We found that sinking fluxes in the reservoir were mostly regulated by local morphological and hydrological conditions, with higher fluxes along or in the vicinity of the old riverbed (average 400 ± 73 mg POC m−2 d−1 and 24 ± 5 mg PN m−2 d−1) and lower fluxes in calmer zones such as side bays (average 106 ± 10 mg POC m−2 d−1 and 8 ± 1 mg PN m−2 d−1). In lakes, where settling fluxes were not linked to the trophy, or dissolved organic carbon, the actual nature of the sedimenting organic material was influenced by lake morphometry and the relative contribution of algal versus terrestrial sources. We conclude that re-suspension and erosion play a major role in shaping the reservoir sinking fluxes which explain both, the higher reservoir deposition and also some of the qualitative differences between the two systems. Despite all these differences, sinking particulate organic carbon fluxes were small and surprisingly similar relative to the surface carbon dioxide emissions in both the reservoir and lakes, representing approximately 16–17 % of the carbon efflux estimated for these same systems in 2008.

Keywords

Boreal ecosystem Carbon deposition Lake Particulate flux Reservoir Sediment trap 

Supplementary material

10533_2012_9760_MOESM1_ESM.eps (13.3 mb)
Supplementary material 1 (EPS 13581 kb)
10533_2012_9760_MOESM2_ESM.eps (972 kb)
Supplementary material 2 (EPS 972 kb)
10533_2012_9760_MOESM3_ESM.eps (1.2 mb)
Supplementary material 3 (EPS 1219 kb)
10533_2012_9760_MOESM4_ESM.doc (74 kb)
Supplementary material 4 (DOC 74 kb)
10533_2012_9760_MOESM5_ESM.doc (28 kb)
Supplementary material 5 (DOC 28 kb)

References

  1. Avnimelech Y, Ritvo G, Meijer LE, Kochba M (2000) Water content, organic carbon and dry bulk density in flooded sediments. Aquacult Eng 25(1):25–33CrossRefGoogle Scholar
  2. Baines SB, Pace ML (1994) Relationships between suspended particulate matter and sinking flux along a trophic gradient and implications for the fate of planktonic primary production. Can J Fish Aquat Sci 51(25):36Google Scholar
  3. Barros N, Huszar V, Cole JJ, Tranvik LJ, Bastviken D, del Giorgio PA, Prairie YT, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci. doi:10.1038/ngeo1211 Google Scholar
  4. Bodaly RA, Beaty KG, Hendzel LH, Majewski AR, Paterson MJ, Rolfhus KR, Penn AF, St Louis VL, Hall BD, Matthews CJ, Cherewyk KA, Mailman M, Hurley JP, Schiff SL, Venkiteswaran JJ (2004) Experimenting with hydroelectric reservoirs. Environ Sci Technol 38(18):347A–352A. doi:347A-352A.310.1021/es040614u CrossRefGoogle Scholar
  5. Bowen R (1991) Isotopes and climates. Elsevier Science Publishers CO., INC. New York, USAGoogle Scholar
  6. Brothers C, Vermaire JC, Gregory-Eaves I (2008) Empirical models for describing recent sedimentation rates in lakes distributed across broad spatial scales. J Paleolimnol 40(4):1003–1019Google Scholar
  7. Brothers S, del Giorgio PA, Teodoru CR, Prairie YT (2012) Landscape heterogeneity influences CO2 production in a young boreal reservoir. Can J Fish Aquat Sci 69(3):447–456. doi:10.1139/f2011-174 CrossRefGoogle Scholar
  8. Campbell ID, Vitt DH, Kelker D, Laird LD, Trew D, Kotak B, LeClair D, Bayley S (2000) A first estimate of organic C storage in Holocene lake sediments in Alberta, Canada. J Paleolimnol 4:395–400CrossRefGoogle Scholar
  9. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184. doi:10.1007/s10021-006-9013-8 CrossRefGoogle Scholar
  10. Dean WE, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–538CrossRefGoogle Scholar
  11. del Giorgio PA, Peters RH (1993) Balance between phytoplankton production and plankton respiration in lakes. Can J Fish Aquat Sci 50:282–289CrossRefGoogle Scholar
  12. Demarty M, Bastien J, TremblayA Hesslein RH, Gill R (2009) Greenhouse gas emissions from boreal reservoirs in Manitoba and Québec, Canada. Environ Sci Technol 43(23):8905–8915. doi:8910.1021/es8035658 CrossRefGoogle Scholar
  13. Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH (2010) Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc Natl Acad Sci USA 107:5738–5743CrossRefGoogle Scholar
  14. Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA (2008) Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22, GB1018. doi:10.1029/2006GB002854
  15. Duarte CM, Middelburg JJ, Caraco NF (2004) Major role of marine vegetation on the oceanic carbon cycle. Biogeosci Discuss 1:659–679CrossRefGoogle Scholar
  16. Einsele G, Yan J, Hinderer M (2001) Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Glob Planet Change 30:167–195CrossRefGoogle Scholar
  17. Eldardir M (1994) Sedimentation in Nile High Dam Reservoir, 1987–1992, and sedimentary futurologic aspects. Sediment. Egypt 2:23–39Google Scholar
  18. Ferland M-E, del Giorgio PA, Teodoru CR, Prairie YT (2012) Long-term C accumulation and total C stocks in boreal lakes in Northern Québec. Glob Biogeochem Cycles (in press)Google Scholar
  19. Friedl G, Wüest A (2002) Disrupting biogeochemical cycles—consequences of damming. Aquat Sci 64:55–65CrossRefGoogle Scholar
  20. Galy-Lacaux C, Delmas R, Jambert C, Dumestre J-F, Labroue L, Richard S, Gosse P (1997) Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana. Glob Biogeochem Cycles 11(4):471–483. doi:410.1029/1097GB01625 CrossRefGoogle Scholar
  21. Hakanson L, Jansson M (1983) Principles of lake sedimentology. Springer, BerlinCrossRefGoogle Scholar
  22. Hall RI, Leavitt PR, Dixit AS, Quinland R, Smol JP (1999) Limnological succession in reservoirs: a paleo-limnological comparison of two methods of reservoir formation. Can J Fish Aquat Sci 56:1109–1121CrossRefGoogle Scholar
  23. Hanson PC, Pollard AI, Bade DL, Predick K, Carpenter SR, Foley JA (2004) A model of carbon evasion and sedimentation in temperate lakes. Glob Change Biol 10:1285–1298CrossRefGoogle Scholar
  24. Hedges JI, Keil RG (1999) Sedimentary organic matter preservation: a test for selective oxic degradation. Am J Sci 299:529–555CrossRefGoogle Scholar
  25. Hedges JI, Oades JM (1997) Comparative organic geochemistries of soils and marine sediments. Org Geochem 27:319–361Google Scholar
  26. Hélie J-F, Hillaire-Marcel C (2006) Sources of particulate and dissolved organic carbon in the St Lawrence River: isotopic approach. Hydrol Process 20:1945–1959CrossRefGoogle Scholar
  27. Hesslein RH (2005) Using gas exchange estimates to determine net production of CO2 in reservoirs and lakes. In: Tremblay A, Varfalvy L, Roehm CL, Garneau M (eds) Greenhouse gas emissions: fluxes and processes hydroelectric reservoirs and natural environments. Springer, Berlin, pp 563–574CrossRefGoogle Scholar
  28. Houel S, Louchouarn L, Lucotte M, Canuel R, Ghaleb B (2006) Translocation of soil organic matter following reservoir impoundment in boreal systems: Implication for in situ productivity. Limnol Oceanogr 51(3):1497–1513CrossRefGoogle Scholar
  29. Jonsson A, Jansson M (1997) Sedimentation and mineralisation of organic carbon, nitrogen and phosphorus in a large humic lake, northern Sweden. Arch Hydrobiol 141:45–65Google Scholar
  30. Jonsson A, Meili M, Bergstrom A-K, Jansson M (2001) Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Ortrasket, N Sweden). Limnol Oceanogr 46:1691–1700CrossRefGoogle Scholar
  31. Karlsson J, Jonsson A, Meili M, Jansson M (2003) Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden. Limnol Oceanogr 48:269–276CrossRefGoogle Scholar
  32. Kendall C, Silva SR, Kelly VJ (2001) Carbon and nitrogen isotopic compositions of particulate organic matter in four large-river systems across the United States. Hydrol Process 15:1301–1346CrossRefGoogle Scholar
  33. Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci USA 107:19691–19695CrossRefGoogle Scholar
  34. Kunz MJ, Anselmetti FS, Wuest A, Wehrli B, Vollenweider A, Thuring S, Senn DB (2011) Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe). J Geophys Res 116:G03003. doi:10.1029/2010JG001538 CrossRefGoogle Scholar
  35. Marchand D, Prairie YT, del Giorgio PA (2009) Linking forest fires to Lake Metabolism and carbon dioxide emissions in the boreal region of Northern Québec. Glob Change Biol 15(12):2861–2873. doi:10.1111/j.1365-2486.2009.01979.x CrossRefGoogle Scholar
  36. Marty J, Planas D (2008) Comparison of methods to determine algal δ13C in freshwater. Limnol Oceanogr: Methods 6:51–63CrossRefGoogle Scholar
  37. Meybeck M (1993) Riverine transport of atmospheric carbon: sources, global typology and budget. Water Air Soil Pollut 70:443–463CrossRefGoogle Scholar
  38. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302CrossRefGoogle Scholar
  39. Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900CrossRefGoogle Scholar
  40. Molot LA, Dillon PJ (1996) Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Glob Biogeochem Cycles 10(3):483–492. doi:10.1029/96GB01666 CrossRefGoogle Scholar
  41. Morris GL, Fan J (1998) Reservoir sedimentation handbook: design and management of dams, reservoirs, and watersheds for sustainable use. McGraw-Hill, New York, USA, p 848Google Scholar
  42. Mulholland PJ, Elwood JW (1982) The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34:490–499CrossRefGoogle Scholar
  43. Osidele OO, Beck MB (2004) Food web modelling for investigating ecosystem behavior in large reservoirs of the south-eastern United States: lessons from Lake Lanier, Georgia. Ecol Model 173:129–158CrossRefGoogle Scholar
  44. Pace ML, Prairie YT (2005) Respiration in lakes. In: del Giorgio PA, Williams PJLB (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 103–121CrossRefGoogle Scholar
  45. Paterson MJ, Findlay D, Beaty K, Schindler EU, Stainton M, MCCullough G (1997) Changes in the planktonic food web of a new experimental reservoir. Can J Fish Aquat Sci 54:1088–1102Google Scholar
  46. Probst JL (2002) The role of continental erosion and river transports in the global carbon cycle. Geochim Cosmochim Acta 69:A7252005Google Scholar
  47. Roehm CL, Prairie YT, del Giorgio PA (2009) The pCO2 dynamics in lakes in the boreal region of northern Québec, Canada. Glob Biogeochem Cycles 23:GB3013. doi:10.1029/2008GB003297
  48. Rosenberg DM, Berkes F, Bodaly RA, Hecky CA, Kelly CA, Rudd JWM (1997) Large-scale impacts of hydroelectric development. Environ Rev 5:27–54CrossRefGoogle Scholar
  49. Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356(6370):589–593CrossRefGoogle Scholar
  50. Schlünz B, Schneider RR (2000) Transport of riverine organic carbon to the oceans: implications for the carbon cycle. Geologische Rundschau (International Journal of Earth Sciences) 88:599–606CrossRefGoogle Scholar
  51. Sobek S, Durisch-Kaiser E, Zurbrugg R, Wongfun N, Wessels M, Pasche N, Wehrli B (2009) Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr 54(6):2243–2254CrossRefGoogle Scholar
  52. Squires MM, Mazzucchi D, Devito KJ (2006) Carbon burial and infill rates in small Western Boreal lakes: physical factors affecting carbon storage. Can J Fish Aquat Sci 63:711–720. doi:10.1139/F05-252 CrossRefGoogle Scholar
  53. Stallard RF (1998) Terrestrial sedimentation and the C cycle: coupling weathering and erosion to carbon storage. Glob Biogeochem Cycles 12:231–237CrossRefGoogle Scholar
  54. St. Louis VL, Kelly CA, Duchemin É, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. BioScience 50:766–775Google Scholar
  55. Sullivan BE, Prahl FG, Small LF, Covert PA (2001) Seasonality of phytoplankton production in the Columbia River: a natural or anthropogenic matter? Geochim Cosmochim Acta 65:1125–1139CrossRefGoogle Scholar
  56. Sundquist ET (2003) The global carbon dioxide budget. Science 259:934–935CrossRefGoogle Scholar
  57. Teodoru CR, Wüest A, Wehrli B (2006) Independent review of the environmental impact assessment report for the Merowe Dam Project (Nile River, Sudan), Eawag Report, Switzerland. http://www.eawag.ch/forschung/surf/publikationen/2006/2006_merowe
  58. Teodoru CR, del Giorgio PA, Prairie YT, Camire M (2009) pCO2 dynamics in boreal streams of northern Québec, Canada. Glob Biogeochem Cycles 23(2):1–11, GB2012. doi:10.1029/2008GB003404 Google Scholar
  59. Teodoru CR, del Giorgio PA, Prairie YT (2010) Spatial heterogeneity of surface CO2 fluxes in a newly created Eastmain-1 reservoir in northern Québec, Canada. Ecosystems 14:28–46. doi:10.1007/s10021-010-9393-7.CrossRefGoogle Scholar
  60. Teodoru CR, Bastien J, Bonneville M-C, del Giorgio PA, Demarty M, Garneau M, Hélie J-F, Pelletier L, Prairie YT, Roulet N, Strachan I, Tremblay A (2012) The net carbon footprint of a newly-created boreal hydroelectric reservoir. Glob Biogeochem Cycles 26, GB2016. doi:10.1029/2011GB004187
  61. Thornton KW (1990) Sedimentary processes. In Thornton KW, Kimmel BL, Payne FE (eds) Reservoir limnology: ecological perspective. Wiley Google Scholar
  62. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie YT, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6):2298–2314Google Scholar
  63. Vachon D, Prairie YT, Cole JJ (2010) The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55(4):1723–1732CrossRefGoogle Scholar
  64. von Wachenfeldt E, Tranvik LJ (2008) Sedimentation in boreal lakes—the role of flocculation of allochthonous dissolved organic matter in water column. Ecosystems 11:803–814CrossRefGoogle Scholar
  65. Vörösmarty CJ, Sahagian D (2000) Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50(9):753–765CrossRefGoogle Scholar
  66. Vörösmarty CJ, Sharma K, Fekete B, Copeland AH, Holden J, Marble J, Lough JA (1997) The storage and aging of continental runoff in large reservoir systems of the 836 world. Ambio 26:210–219Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Cristian R. Teodoru
    • 1
    • 2
  • Paul A. del Giorgio
    • 1
  • Yves T. Prairie
    • 1
  • Annick St-Pierre
    • 1
  1. 1.Département des Sciences BiologiquesUniversité du Québec à MontrèalMontrèalCanada
  2. 2.Earth and Environmental Science Department, Division of Soil and Water ManagementKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations