Biogeochemistry

, Volume 112, Issue 1–3, pp 637–659 | Cite as

Retention of dissolved silica within the fluvial system of the conterminous USA

  • Ronny Lauerwald
  • Jens Hartmann
  • Nils Moosdorf
  • Hans H. Dürr
  • Stephan Kempe
Article

Abstract

Dissolved silica (DSi) is an important nutrient in aquatic ecosystems. Increased DSi retention within the fluvial system due to damming and eutrophication has led to a decrease in DSi exports to coastal waters, which can have severe consequences for coastal areas where ecosystem functioning depends on fluvial DSi inputs. The analysis of fluvial DSi fluxes and DSi retention at regional to global scales is thus an important research topic. This study explores the possibility to empirically assess regional DSi retention based on a spatially explicit estimation of DSi mobilization and fluvial DSi fluxes calculated from hydrochemical monitoring data. The uncertainty of DSi retention rates (rDSi) estimated for particular rivers is high. Nevertheless, for the St. Lawrence River (rDSi = 91 %) and the Mississippi River (rDSi = 13 %) the estimated DSi retention rates are reasonable and are supported by literature values. The variety of sources of the uncertainty in the DSi retention assessment is discussed.

Keywords

Dissolved silica Rivers Retention Land–ocean matter transfer Biogeochemistry Silicon cycle 

Abbreviations

AAA

Areal proportions of artificial areas (= urban + industrial areas)

AAL

Areal proportion of agricultural land

ABF

Areal proportion of broadleaved forests

ACF

Areal proportion of coniferous forests

AHV

Areal proportion of herbaceous vegetation (= grasslands)

ASL

Areal proportion of shrublands

BSi

Biogenic, amorphous silica

COV

Coefficient of variance

DSi

Dissolved silica

FDSi

Total fluvial DSi flux

fDSi

Specific fluvial DSi flux

fDSi,calc

FDSi calculated from hydrochemical monitoring data

fDSi,mob

Spatially explicit estimates of DSi mobilization

q

Mean annual runoff

rDSi

DSi retention rate

Tair,mean

Mean air temperature

Notes

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (German Science Foundation) through the project HA4472/6-1 and the cluster of excellence ‘KlimaCampus’ (EXC177). H. H. Dürr was funded by Utrecht University (High Potential Project G-NUX). The USGS is thanked for providing river chemistry data.

References

  1. Alexander RB, Slack JR, Ludtke AS, Fitzgerald KK, Schertz TL (1997) Data from Selected US Geological Survey National Stream Water-Quality Monitoring Networks (WQN)Google Scholar
  2. Alexandre A, Meunier JD, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61(3):677–682CrossRefGoogle Scholar
  3. Arino O, Gross D, Ranera F, Leroy M, Bicheron P, Brockman C, Defourny P, Vancutsem C, Achard F, Durieux L, Bourg L, Latham J, Di Gregorio A, Witt R, Herold M, Sambale J, Plummer S, Weber JL (2007) GlobCover: ESA service for Global land cover from MERIS. In: Igarss: 2007 Ieee International Geoscience and Remote Sensing Symposium, Vols 1–12, Sensing and understanding our planet. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS). pp 2412–2415Google Scholar
  4. Beusen AHW, Bouwman AF, Dürr HH, Dekkers ALM, Hartmann J (2009) Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model. Glob Biogeochem Cycles 23. doi:10.1029/2008gb003281
  5. Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20(3). doi:10.1029/2006gb002690
  6. Bluth GJS, Kump LR (1994) Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta 58(10):2341–2359CrossRefGoogle Scholar
  7. Borrelli N, Alvarez MF, Osterrieth ML, Marcovecchio JE (2010) Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in Typical Argiudolls of the Pampean Plain, Argentina: a preliminary study. J Soils Sediments 10(6):983–994. doi:10.1007/s11368-010-0205-7 CrossRefGoogle Scholar
  8. Campy M, Meybeck M (1995) Les sédiments lacustres. In: Pourriot R, Meybeck M (eds) Limnologie Générale. Masson, Paris, pp 6–59Google Scholar
  9. Carey J, Fulweiler R (2011) Human activities directly alter watershed dissolved silica fluxes. Biogeochemistry 1–14. doi:10.1007/s10533-011-9671-2
  10. Cary L, Alexandre A, Meunier JD, Boeglin JL, Braun JJ (2005) Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon). Biogeochemistry 74(1):101–114. doi:10.1007/s10533-004-2945-1 CrossRefGoogle Scholar
  11. CIESIN (2005) Gridded population of the world version 3 (GPWv3): Population grids. CIESIN, Columbia University New York, PalisadesGoogle Scholar
  12. Clark JF, Simpson HJ, Bopp RF, Deck B (1992) Geochemistry and loading history of phosphate and silicate in the Hudson estuary. Estuar Coast Shelf Sci 34(3):213–233. doi:10.1016/s0272-7714(05)80080-0
  13. Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences 8(8):2281–2293. doi:10.5194/bg-8-2281-2011 CrossRefGoogle Scholar
  14. Conley DJ (1997) Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42(4):774–777CrossRefGoogle Scholar
  15. Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cycles 16(4):8. doi:10.1029/2002gb001894 CrossRefGoogle Scholar
  16. Conley DJ, Schelske CL, Stoermer EF (1993) Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecol-Prog Ser 101(1–2):179–192CrossRefGoogle Scholar
  17. Conley DJ, Likens GE, Buso DC, Saccone L, Bailey SW, Johnson CE (2008) Deforestation causes increased dissolved silicate losses in the Hubbard brook experimental forest. Glob Change Biol 14(11):2548–2554. doi:10.1111/j.1365-2486.2008.01667.x Google Scholar
  18. Cook PLM, Aldridge KT, Lamontagne S, Brookes JD (2010) Retention of nitrogen, phosphorus and silicon in a large semi-arid riverine lake system. Biogeochemistry 99(1–3):49–63. doi:10.1007/s10533-009-9389-6 CrossRefGoogle Scholar
  19. Cornelis JT, Ranger J, Iserentant A, Delvaux B (2010) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochemistry 97(2–3):231–245. doi:10.1007/s10533-009-9369-x CrossRefGoogle Scholar
  20. Danielsson A, Papush L, Rahm L (2008) Alterations in nutrient limitations: scenarios of a changing Baltic Sea. J Mar Syst 73(3–4):263–283. doi:10.1016/j.jmarsys.2007.10.015 CrossRefGoogle Scholar
  21. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433(7027):728–731. doi:10.1038/nature03299 CrossRefGoogle Scholar
  22. Dürr HH, Meybeck M, Hartmann J, Laruelle GG, Roubeix V (2011) Global spatial distribution of natural riverine silica inputs to the coastal zone. Biogeosciences 8:597–620CrossRefGoogle Scholar
  23. Fekete BM, Vörösmarty CJ, Lammers RB (2001) Scaling gridded river networks for macroscale hydrology: development, analysis, and control of error. Water Resour Res 37(7):1955–1967. doi:10.1029/2001wr900024 CrossRefGoogle Scholar
  24. Fekete BM, Vörösmarty CJ, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob Biogeochem Cycles 16(3). doi:10.1029/1999gb001254
  25. Ferris JA, Lehman JT (2007) Interannual variation in diatom bloom dynamics: roles of hydrology, nutrient limitation, sinking, and whole lake manipulation. Water Res 41(12):2551–2562. doi:10.1016/j.watres.2007.03.027 CrossRefGoogle Scholar
  26. Fraysse F, Pokrovsky OS, Meunier JD (2010) Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochim Cosmochim Acta 74(1):70–84. doi:10.1016/j.gca.2009.09.002 CrossRefGoogle Scholar
  27. Friedl G, Teodoru C, Wehrli B (2004) Is the Iron Gate I reservoir on the Danube River a sink for dissolved silica? Biogeochemistry 68(1):21–32CrossRefGoogle Scholar
  28. Fulweiler RW, Nixon SW (2005) Terrestrial vegetation and the seasonal cycle of dissolved silica in a southern New England coastal river. Biogeochemistry 74(1):115–130. doi:10.1007/s10533-004-2947-z CrossRefGoogle Scholar
  29. Garnier J, Leporcq B, Sanchez N, Philippon X (1999) Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry 47(2):119–146Google Scholar
  30. Goolsby DA, Battaglin WA, Lawrence GB, Artz RS, Aulenbach BT, Hooper RP, Keeney DR, Stensland GJ (1999) Flux and sources of nutrients in the Mississippi-Atchafalaya River basin. Topic 3 Rept. of the integrated assessment on hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Deicision Analysis Ser No 17 NOAA Coastal Ocean Program, Silver SpringDGoogle Scholar
  31. Goto N, Iwata T, Akatsuka T, Ishikawa M, Kihira M, Azumi H, Anbutsu K, Mitamura O (2007) Environmental factors which influence the sink of silica in the limnetic system of the large monomictic Lake Biwa and its watershed in Japan. Biogeochemistry 84(3):285–295. doi:10.1007/s10533-007-9115-1 CrossRefGoogle Scholar
  32. Graf WL (1993) Landscapes, commodities, and ecosystems: the relationship between policy and science for American rivers. In: Water Science and Technology Board (ed) Sustaining our water resources. National Academy Press, Washington, p 11–42Google Scholar
  33. Harrison JA, Seitzinger SP, Bouwman AF, Caraco NF, Beusen AHW, Vörösmarty CJ (2005) Dissolved inorganic phosphorus export to the coastal zone: results from a spatially explicit, global model. Glob Biogeochem Cycles 19(4). doi:10.1029/2004gb002357
  34. Hartmann J, Jansen N, Dürr HH, Harashima A, Okubo K, Kempe S (2010) Predicting riverine dissolved silica fluxes to coastal zones from a hyperactive region and analysis of their first-order controls. Int J Earth Sci 99(1):207–230. doi:10.1007/s00531-008-0381-5 CrossRefGoogle Scholar
  35. Hartmann J, Levy J, Kempe S (2011) Increasing dissolved silica trends in the Rhine River: an effect of recovery from high P loads? Limnology 12(1):63–73. doi:10.1007/s10201-010-0322-4
  36. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. doi:10.1002/joc.1276 CrossRefGoogle Scholar
  37. Hofmann A, Roussy D, Filella M (2002) Dissolved silica budget in the North basin of Lake Lugano. Chem Geol 182(1):35–55CrossRefGoogle Scholar
  38. Hornberger GM, Scanlon TM, Raffensperger JP (2001) Modelling transport of dissolved silica in a forested headwater catchment: the effect of hydrological and chemical time scales on hysteresis in the concentration-discharge relationship. Hydrol Process 15(10):2029–2038CrossRefGoogle Scholar
  39. Humborg C, Conley DJ, Rahm L, Wulff F, Cociasu A, Ittekkot V (2000) Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29(1):45–50. doi:10.1639/0044-7447(2000)029 Google Scholar
  40. Humborg C, Ittekkot V, Cociasu A, von Bodungen B (1997) Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386(6623):385–388Google Scholar
  41. Humborg C, Pastuszak M, Aigars J, Siegmund H, Mörth CM, Ittekkot V (2006) Decreased silica land-sea fluxes through damming in the Baltic Sea catchment: significance of particle trapping and hydrological alterations. Biogeochemistry 77(2):265–281. doi:10.1007/s10533-005-1533-3 CrossRefGoogle Scholar
  42. Humborg C, Smedberg E, Medina MR, Mörth CM (2008) Changes in dissolved silicate loads to the Baltic Sea: the effects of lakes and reservoirs. J Mar Syst 73(3–4):223–235. doi:10.1016/j.jmarsys.2007.10.014 CrossRefGoogle Scholar
  43. Jansen N, Hartmann J, Lauerwald R, Dürr HH, Kempe S, Loos S, Middelkoop H (2010) Dissolved Silica mobilization in the conterminous USA. Chem Geol. doi:10.1016/j.chemgeo.2009.11.008 Google Scholar
  44. Johnson TC, Eisenreich SJ (1979) Silica in Lake Superior: mass balance considerations and a model for dynamic response to eutrophication. Geochim Cosmochim Acta 43:77–91CrossRefGoogle Scholar
  45. Kelly VJ (2001) Influence of reservoirs on solute transport: a regional-scale approach. Hydrol Process 15(7):1227–1249CrossRefGoogle Scholar
  46. Koch RW, Guelda DL, Bukaveckas PA (2004) Phytoplankton growth in the Ohio, Cumberland and Tennessee Rivers, USA: inter-site differences in light and nutrient limitation. Aquat Ecol 38(1):17–26CrossRefGoogle Scholar
  47. Ladouche B, Probst A, Viville D, Idir S, Baque D, Loubet M, Probst JL, Bariac T (2001) Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France). J Hydrol 242(3–4):255–274CrossRefGoogle Scholar
  48. Laruelle GG, Roubeix V, Sferratore A, Brodherr B, Ciuffa D, Conley DJ, Dürr HH, Garnier J, Lancelot C, Phuong QLT, Meunier JD, Meybeck M, Michalopoulos P, Moriceau B, Longphuirt SN, Loucaides S, Papush L, Presti M, Ragueneau O, Regnier P, Saccone L, Slomp CP, Spiteri C, van Cappellen P (2009) Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Glob Biogeochem Cycles 23. doi:10.1029/2008gb003267
  49. Le Thi PQ, Billen G, Garnier J, Thery S, Ruelland D, Nghiem XA, Chau VM (2010) Nutrient (N, P, Si) transfers in the subtropical Red River system (China and Vietnam): modelling and budget of nutrient sources and sinks. J Asian Earth Sci 37(3):259–274. doi:10.1016/j.jseaes.2009.08.010 CrossRefGoogle Scholar
  50. Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. Eos, Trans, AGU 89(10):93–94CrossRefGoogle Scholar
  51. Melzer SE, Knapp AK, Kirkman KP, Smith MD, Blair JM, Kelly EF (2010) Fire and grazing impacts on silica production and storage in grass dominated ecosystems. Biogeochemistry 97(2–3):263–278. doi:10.1007/s10533-009-9371-3 CrossRefGoogle Scholar
  52. Meybeck M, Dürr HH, Vörösmarty CJ (2006) Global coastal segmentation and its river catchment contributors: a new look at land-ocean linkage. Glob Biogeochem Cycles 20(1). doi:10.1029/2005gb002540
  53. Meybeck M, Dürr HH, Roussennac S, Ludwig W (2007) Regional seas and their interception of riverine fluxes to oceans. Mar Chem 106(1–2):301–325. doi:10.1016/j.marchem.2007.01.002 CrossRefGoogle Scholar
  54. Moosdorf N, Hartmann J, Lauerwald R (2011) Changes in dissolved silica mobilization into river systems draining North America until the period 2081–2100. J Geochem Explor 110(1):31–39. doi:10.1016/j.gexplo.2010.09.001 CrossRefGoogle Scholar
  55. NASA/NGA (2003) SRTM Water body data product specific guidance, Version 2.0Google Scholar
  56. Officer CB, Ryther JH (1980) The possible importance of silicon in marine eutrophication. Marine Ecology-Progress Series 3(1):83–91. doi:10.3354/meps003083 CrossRefGoogle Scholar
  57. Parker JI, Conway HL, Yaguchi EM (1977) Dissolution of diatom frustules and recycling of amorphous silicon in Lake Michigan. J Fish Res Board Can 34:545–551CrossRefGoogle Scholar
  58. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524. doi:10.1126/science.1205438 CrossRefGoogle Scholar
  59. Schelske CL (1985) Biogeochemical silica mass balances in Lake Michigan and Lake Superior. Biogeochemistry 1(3):197–218CrossRefGoogle Scholar
  60. Sferratore A, Billen G, Garnier J, Thery S (2005) Modeling nutrient (N, P, Si) budget in the Seine watershed: Application of the Riverstrahler model using data from local to global scale resolution. Global Biogeochemical Cycles 19(4). doi:10.1029/2005gb002496
  61. Sferratore A, Garnier J, Billen G, Conley DJ, Pinault S (2006) Diffuse and point sources of silica in the seine river watershed. Environ Sci Technol 40(21):6630–6635. doi:10.1021/Es060710q CrossRefGoogle Scholar
  62. Sferratore A, Billen G, Garnier J, Smedberg E, Humborg C, Rahm L (2008) Modelling nutrient fluxes from sub-arctic basins: comparison of pristine vs. dammed rivers. J Mar Syst 73(3–4):236–249. doi:10.1016/j.jmarsys.2007.10.012 CrossRefGoogle Scholar
  63. Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli E, Sundström B, Edler L, Anderson DM (eds) Toxic marine phytoplankton: proceedings of the Fourth International Conference on Toxic Marine Phytoplankton held June 26–30 in Lund. Sweden, Elsevier, pp 29–40Google Scholar
  64. Smis A, van Damme S, Struyf E, Clymans W, van Wesemael B, Frot E, Vandevenne F, van Hoestenberghe T, Govers G, Meire P (2010) A trade-off between dissolved and amorphous silica transport during peak flow events (Scheldt river basin, Belgium): impacts of precipitation intensity on terrestrial Si dynamics in strongly cultivated catchments. Biogeochemistry 1–13. doi:10.1007/s10533-010-9527-1
  65. Stelzer RS, Likens GE (2006) Effects of sampling frequency on estimates of dissolved silica export by streams: The role of hydrological variability and concentration-discharge relationships. Water Resour Res 42(7). doi:10.1029/2005wr004615
  66. Street-Perrott FA, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Proc Land 33(9):1436–1457. doi:10.1002/esp.1712 CrossRefGoogle Scholar
  67. Struyf E, Mörth C-M, Humborg C, Conley DJ (2010a) An enormous amorphous silica stock in boreal wetlands. J Geophys Res 115 (G4):G04008. doi:10.1029/2010jg001324
  68. Struyf E, Smis A, van Damme S, Garnier J, Govers G, van Wesemael B, Conley DJ, Batelaan O, Frot E, Clymans W, Vandevenne F, Lancelot C, Goos P, Meire P (2010b) Historical land use change has lowered terrestrial silica mobilization. Nat Commun 1(8):129. doi:10.1038/ncomms1128 CrossRefGoogle Scholar
  69. Treguer P, Nelson DM, van Bennekom AJ, Demaster DJ, Leynaert A, Queguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268(5209):375–379. doi:10.1126/science.268.5209.375 CrossRefGoogle Scholar
  70. Triplett LD, Engstrom DR, Conley DJ, Schellhaass SM (2008) Silica fluxes and trapping in two contrasting natural impoundments of the upper Mississippi River. Biogeochemistry 87(3):217–230. doi:10.1007/s10533-008-9178-7 CrossRefGoogle Scholar
  71. USGS National Water Information System (NWIS). http://waterdata.usgs.gov/nwis. Accessed 24 June 2009
  72. van Bennekom AJ, Salomons W (1981) Pathways of nutrients and organic matter from land to ocean through rivers. In: Martin JM, Burton JD, Eisma D (eds) River Inputs to Ocean Systems. UNEP/UNESCO, Rome, pp 33–51Google Scholar
  73. van Dokkum HP, Hulskotte JHJ, Kramer KJM, Wilmot J (2004) Emission, fate and effects of soluble silicates (waterglass) in the aquatic environment. Environ Sci Technol 38(2):515–521. doi:10.1021/es0264697 CrossRefGoogle Scholar
  74. Vörösmarty CJ, Fekete BM, Meybeck M, Lammers RB (2000) Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution. J Hydrol 237(1–2):17–39CrossRefGoogle Scholar
  75. Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Global Planet Change 39(1–2):169–190. doi:10.1016/s0921-8181(03)00023-7 CrossRefGoogle Scholar
  76. West AJ, Galy A, Bickle M (2005) Tectonic and climatic controls on silicate weathering. Earth Planet Sci Lett 235(1–2):211–228. doi:10.1016/j.epsl.2005.03.020 CrossRefGoogle Scholar
  77. White AF, Blum AE, Bullen TD, Vivit DV, Schulz M, Fitzpatrick J (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta 63(19–20):3277–3291. doi:10.1016/s0016-7037(99)00250-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ronny Lauerwald
    • 1
  • Jens Hartmann
    • 1
  • Nils Moosdorf
    • 1
  • Hans H. Dürr
    • 2
    • 4
  • Stephan Kempe
    • 3
  1. 1.Institute for Biogeochemistry and Marine ChemistryKlimaCampus, University of HamburgHamburgGermany
  2. 2.Department of Physical GeographyUtrecht UniversityCS UtrechtThe Netherlands
  3. 3.Institute of Applied GeosciencesTU DarmstadtDarmstadtGermany
  4. 4.Department of Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada

Personalised recommendations