Advertisement

Biogeochemistry

, Volume 111, Issue 1–3, pp 515–533 | Cite as

Age-related changes in litter inputs explain annual trends in soil CO2 effluxes over a full Eucalyptus rotation after afforestation of a tropical savannah

  • Yann Nouvellon
  • Daniel Epron
  • Claire Marsden
  • Antoine Kinana
  • Guerric Le Maire
  • Philippe Deleporte
  • Laurent Saint-André
  • Jean-Pierre Bouillet
  • Jean-Paul Laclau
Article

Abstract

Land use changes such as savannah afforestation with eucalypts impact the soil carbon (C) balance, therefore affecting soil CO2 efflux (F s ), a major flux in the global C cycle. We tested the hypothesis that F s increases with stand age after afforestation, due to an increasing input of fresh organic matter to the forest floor. In a Eucalyptus plantation established on coastal savannahs in Congo, bimonthly measurements of F s were carried out for 1 year on three adjacent stands aged 0.9, 4.4 and 13.7 years and presenting similar growth patterns. Litterfall and litter accumulation on the forest floor were quantified over a chronosequence. Equations were derived to estimate the contribution of litter decomposition to F s throughout the rotation. Litterfall increased with stand age after savannah afforestation. F s , that was strongly correlated on a seasonal basis with soil water content (SWC) in all stands, decreased between ages 0.9 year and 4.4 years due to savannah residue depletion, and increased between ages 4.4 years and 13.7 years, mainly because of an increasing amount of decomposing eucalypt litter. The aboveground litter layer therefore appeared as a major source of CO2, whose contribution to F s in old stands was estimated to be about four times higher than that of the eucalypt-derived soil organic C pool. The high litter contribution to F s in older stands might explain why 13.7 years-old stand F s was limited by moisture all year round whereas SWC did not limit F s for large parts of the year in the youngest stands.

Keywords

Afforestation Eucalyptus Litter Respiration Soil carbon Dissolved organic carbon Land use changes Congo 

List of symbols

a

Parameter describing the shape of the relationship between F s and θ s

BRa

Above-ground biomass of the savannah at the time of afforestation (kg DM m−2)

BRb

Below-ground biomass of the savannah at the time of afforestation (kg DM m−2)

c

Carbon fraction in biomass (kg C kg DM−1)

CSL

Labile savannah-derived soil C (kg C m−2)

CSL0

Initial value (at the time of afforestation) of C SL (kg C m−2)

FCSL

Annual soil CO2 efflux resulting from the decomposition of C SL (kg C m−2 year−1)

Fff

Annual soil CO2 efflux resulting from the decomposition of eucalypt above-ground litter (kg C m−2 year−1)

Fre

Annual soil CO2 efflux resulting from the respiration of Eucalyptus roots and associated mycorrhiza and from the decomposition of Eucalyptus below-ground litter and Eucalyptus-derived soil C (kg C m−2 year−1)

Frs

Annual soil CO2 efflux resulting from the decomposition of savannah residues (kg C m−2 year−1)

Fs

Soil CO2 effluxes (μmol m−2 s−1)

Fsann

Cumulative annual soil CO2 efflux (kg C m−2 year−1)

Fsm

Asymptotic soil CO2 effluxes obtained at high θ s (μmol m−2 s−1)

kCSL

Decay coefficient of the labile savannah-derived soil C (year−1)

kdl

Decomposition coefficient of the forest floor (i.e. ratio F ff /(c M ff ); year−1)

kff

Parameter describing the rate at which M ff approaches its asymptotic value as stands mature (year−1)

kl

Parameter describing the rate at which L approaches its asymptotic value as stands mature (year−1)

kRa

Decay coefficient of decomposing above-ground savannah biomass (year−1)

kRb

Decay coefficient of decomposing below-ground savannah biomass (year−1)

L

Litterfall (kg DM m−2 year−1)

Lmax

Asymptotic value of L in the relationship between L and stand age (kg DM m−2 year−1)

Mff

Litter mass on the forest floor (kg DM m−2)

Mffmax

Asymptotic value of M ff in the relationship between M ff and stand age (kg DM m−2)

MRT

Mean residence time (year)

p

Shape parameter in the relationship between M ff and stand age (unitless)

θs

Volumetric soil water content in the 0–6 cm soil layer (m3 m−3)

θs0

Value of θ s for which modelled F s is zero (m3 m−3)

θs90

Value of θ s at which F s reaches 90% of F sm (m3 m−3)

Notes

Acknowledgments

This study was funded by the Observatoire de Recherche en Environnement F-ORE-T and the European Integrated Project Ultra Low CO2 Steelmaking (ULCOS-Contract n°515960). Additional economic support was provided through the EU-funded CARBOAFRICA project. Technical assistance was provided by the CRDPI.

References

  1. Agren GI, Bosatta E, Magill AH (2001) Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128:94–98CrossRefGoogle Scholar
  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Caski F (eds) Proceedings of the Second International Symposium on Information Theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  3. Bader NE, Cheng W (2007) Rhizosphere priming effect of Populus fremontii obscures the temperature sensitivity of soil organic carbon respiration. Soil Biol Biochem 39:600–606CrossRefGoogle Scholar
  4. Bahn M, Reichstein M, Davidson EA, Grünzweig J, Jung M, Carbone MS, Epron D, Misson L, Nouvellon Y, Roupsard O, Savage K, Trumbore SE, Gimeno C, Curiel Yuste J, Tang J, Vargas R, Janssens IA (2010) Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeosciences 7:2147–2157CrossRefGoogle Scholar
  5. Bernhard-Reversat F (1993) Dynamics of litter and organic matter at the soil-litter interface in fast-growing tree plantations on sandy ferrallitic soils (Congo). Acta Oecol 14:179–195Google Scholar
  6. Borken W, Davidson EA, Savage K, Gaudinski J, Trumbore SE (2003) Drying and wetting effects on carbon dioxide release from organic horizons. Soil Sci Soc Am J 67:1888–1896CrossRefGoogle Scholar
  7. Bouillet J-P, Laclau J-P, Arnaud M, Thongo M’Bou A, Saint-Andre′ L, Jourdan C (2002) Changes with age in the spatial distribution of roots of an Eucalyptus clone in Congo impact on water and nutrient uptake. For Ecol Manag 171:43–57CrossRefGoogle Scholar
  8. Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993) Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Can J For Res 23:1402–1407CrossRefGoogle Scholar
  9. Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, dos Santos J, Araujo AC, Kruijt B, Nobre AD, Trumbore SE (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:S72–S88CrossRefGoogle Scholar
  10. Christina M, Laclau J-P, Gonçalves JLM, Jourdan C, Nouvellon Y, Bouillet J-P (2011) Almost symmetrical vertical growth rates above and below ground in one of the world’s most productive forests. Ecosphere 2(3):1–10CrossRefGoogle Scholar
  11. Cisneros-Dozal LM, Trumbore S, Hanson PJ (2006) Partitioning sources of soil-respired CO2 and their seasonal variation using a unique radiocarbon tracer. Glob Change Biol 12:194–204CrossRefGoogle Scholar
  12. Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR (2007) Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229–240CrossRefGoogle Scholar
  13. Cleveland CC, Wieder WR, Reed SC, Townsend AR (2010) Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology 91:2313–2323CrossRefGoogle Scholar
  14. Cotrufo MF (2006) Quantity of standing litter: a driving factor of root dynamics. Plant Soil 281:1–3Google Scholar
  15. Crow SE, Lajtha K, Bowden RD, Yano Y, Brant JB, Caldwell BA, Sulzman EW (2009) Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. For Ecol Manag 258:2224–2232CrossRefGoogle Scholar
  16. Curiel Yuste J, Janssens IA, Carrara A, Meiresonne L, Ceulemans R (2003) Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol 23(18):1263–1270CrossRefGoogle Scholar
  17. Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol 4:217–227CrossRefGoogle Scholar
  18. Davidson EA, Verchot LV, Henrique Cattanio J, Ackerman IL, Carvalho JEM (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69CrossRefGoogle Scholar
  19. Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Law BE, Luo Y, Pregitzer KS (2002) Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agric For Meteorol 113:39–51CrossRefGoogle Scholar
  20. DeForest JL, Chen J, McNulty SG (2009) Leaf litter is an important mediator of soil respiration in an oak-dominated forest. Int J Biometeorol 53:127–134CrossRefGoogle Scholar
  21. du Toit B (2008) Effects of site management on growth, biomass partitioning and light use efficiency in a young stand of Eucalyptus grandis in South Africa. For Ecol Manag 255:2324–2336CrossRefGoogle Scholar
  22. Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42CrossRefGoogle Scholar
  23. Epron D, Farque L, Lucot E, Badot PM (1999) Soil CO2 efflux in a beech forest: dependence on soil temperature and soil water content. Ann For Sci 56:221–226CrossRefGoogle Scholar
  24. Epron D, Nouvellon Y, Roupsard O, Mouvondy W, Mabiala A, Saint-André L, Joffre R, Jourdan C, Bonnefond J-M, Berbigier P, Hamel O (2004) Spatial and temporal variation of soil respiration in an Eucalyptus plantation in Congo. For Ecol Manag 202:149–160CrossRefGoogle Scholar
  25. Epron D, Marsden C, Thongo M’bou A, Saint-andré L, D’Annunzio R, Nouvellon Y (2009) Soil carbon dynamics following afforestation of a tropical savannah with Eucalyptus in Congo. Plant Soil 323:309–322CrossRefGoogle Scholar
  26. Epron D, Laclau J-P, Almeida JCR, Gonçalves JLM, Ponton S, Sette CR Jr, Delgado-Rojas JS, Bouillet J-P, Nouvellon Y, (2011) Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations? Tree Physiol. doi: 10.1093/treephys/tpr107
  27. Frey SD, Six J, Elliott ET (2003) Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil–litter interface. Soil Biol Biochem 35:1001–1004CrossRefGoogle Scholar
  28. Fujii K, Hartono A, Funakawa S, Uemura M, Kosaki T (2011) Fluxes of dissolved organic carbon in three tropical secondary forests developed on serpentine and mudstone. Geoderma 163:119–126CrossRefGoogle Scholar
  29. Giadina C, Ryan MG (2002) Total belowground carbon allocation in a fast-growing Eucalyptus plantation estimated using a carbon balance approach. Ecosystems 5:487–499CrossRefGoogle Scholar
  30. Giesler R, Hogberg MN, Strobel BW, Richter A, Nordgren A, Hogberg P (2007) Production of dissolved organic carbon and low-molecular weight organic acids in soil solution driven by recent tree photosynthate. Biogeochemistry 2007:1–12CrossRefGoogle Scholar
  31. Gottlicher SG, Steinmann K, Betson NR, Hogberg P (2006) The dependence of soil microbial activity on recent photosynthate from trees. Plant Soil 287:85–94CrossRefGoogle Scholar
  32. Gough CM, Seiler JR, Wiseman PE, Maier CA (2005) Soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations on the Virginia Piedmont and South Carolina Coastal plain over a rotation-length chronosequence. Biogeochemistry 73:127–147CrossRefGoogle Scholar
  33. Grace J, José JS, Meir P, Miranda HS, Montes RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33:387–400CrossRefGoogle Scholar
  34. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360CrossRefGoogle Scholar
  35. Joslin JD, Gaudinski JB, Torn MS, Riley WJ, Hanson PJ (2006) Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest. New Phytol 172:523–535CrossRefGoogle Scholar
  36. Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sci 171:52–60CrossRefGoogle Scholar
  37. Keith H, Jacobsen KL, Raison RJ (1997) Effects of soils phosphorus avaibility, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant Soil 190:127–141CrossRefGoogle Scholar
  38. Kutsch WL, Persson T, Schrumpf M, Moyano FE, Mund M, Andersson S, Schulze E-D (2010) Heterotrophic soil respiration and soil carbon dynamics in the deciduous Hainich forest obtained by three approaches. Biogeochemistry 100:167–183CrossRefGoogle Scholar
  39. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371CrossRefGoogle Scholar
  40. Laclau JP, Arnaud M, Bouillet JP, Ranger J (2001) Spatial distribution of Eucalyptus roots in a deep sandy soil in Congo: relationships with the ability of the stand to take up water and nutrients. Tree Physiol 21(2–3):129–136CrossRefGoogle Scholar
  41. Laclau J-P, Sama-Poumba W, Nzila JDD, Bouillet J-P, Ranger J (2002) Biomass and nutrient dynamics in a littoral savannah subjected to annual fires in Congo. Acta Oecol 23:41–50CrossRefGoogle Scholar
  42. Laclau J-P, Ranger J, Bouillet J-P, Nzila J-D, Deleporte P (2003a) Nutrient cycling in a clonal stand of Eucalyptus and adjacent savanna ecosystem in Congo. 1 Chemical composition of rainfall, throughfall and stemflow solutions. For Ecol Manag 176:105–119CrossRefGoogle Scholar
  43. Laclau J-P, Ranger J, Nzila J-D, Bouillet J-P, Deleporte P (2003b) Nutrient cycling in a clonal stand of Eucalyptus and adjacent savanna ecosystem in Congo. 2 Chemical composition of soil solutions. For Ecol Manag 180:527–544CrossRefGoogle Scholar
  44. Laclau J-P, Toutain F, Thongo M’Bou A, Arnaud M, Joffre R, Ranger J (2004) The function of the superficial root mat in the biogechemical cycles of nutrient in congolese Eucalyptus plantations. Ann Bot 93:249–261CrossRefGoogle Scholar
  45. Laclau J-P, Ranger J, Deleporte P, Nouvellon Y, Saint-André L, Marlet S, Bouillet J-P (2005) Nutrient cycling in a clonal stand of Eucalyptus and adjacent savanna ecosystem in Congo. 3 Input-Output budgets and consequences for the sustainability of the plantations. For Ecol Manag 210:375–391CrossRefGoogle Scholar
  46. Laclau JP, Bouillet J-P, Gonçalves JLM, Silva EV, Jourdan C, Cunha MCS, Moreira MR, Saint-André L, Maquère V, Nouvellon Y, Ranger J (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil. 1 Growth dynamics and net primary production. For Ecol Manag 255:3905–3917CrossRefGoogle Scholar
  47. Laclau J-P, Ranger J, Gonçalves J-L, Maquere V, Krusche AV, Thongo M’Bou A, Nouvellon Y, Saint-Andre L, Bouillet J-P, Piccolo M, Deleporte P (2010a) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations. Main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259:1771–1785CrossRefGoogle Scholar
  48. Laclau J-P, Levillain J, Deleporte P, Nzila J-D, Bouillet J-P, Saint André L, Versini A, Mareschal L, Nouvellon Y, Thongo M’Bou A, Ranger J (2010b) Organic residue mass at planting is an excellent predictor of tree growth in Eucalyptus plantations established on a sandy tropical soil. For Ecol Manag 260:2148–2159CrossRefGoogle Scholar
  49. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627CrossRefGoogle Scholar
  50. Le Quere C, Raupach MR, Canadell JG, Marland G et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836CrossRefGoogle Scholar
  51. Lee X, Wu H-J, Sigler J, Oishi C, Siccama T (2004) Rapid and transient response of soil respiration to rain. Glob Change Biol 10:1017–1026CrossRefGoogle Scholar
  52. Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009) Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol 29:579–585CrossRefGoogle Scholar
  53. Marsden C (2006) Caractérisation des incertitudes associées aux estimations de respiration hétérotrophe dans les plantations d’Eucalyptus au Congo. Master Thesis, University Henri Poincaré, Nancy, June 2006, pp 28Google Scholar
  54. Marsden C, Nouvellon Y, Thongo M’Bou A, Saint-André L, Jourdan C, Kinana A, Epron D (2008a) Two independent estimations of stand-level root respiration on clonal Eucalyptus stands in Congo: up scaling of direct measurements on roots versus the trenched-plot technique. New Phytol 177:676–687CrossRefGoogle Scholar
  55. Marsden C, Nouvellon Y, Epron D (2008b) Relating coarse root respiration to root diameter in clonal Eucalyptus stands in the Republic of the Congo. Tree Physiol 28:1245–1254CrossRefGoogle Scholar
  56. Maurice J, Laclau J-P, Scorzoni D, Gonçalves JLM, Nouvellon Y, Bouillet J-P, Stape J-L, Ranger J, Behling M, Chopart J-L (2010) Fine root isotropy in Eucalyptus grandis plantations. Towards the prediction of root length densities from root counts on trench walls. Plant Soil 334:261–275CrossRefGoogle Scholar
  57. Merbold L, Ziegler W, Mukelabai MM, Kutsch WL (2011) Spatial and temporal variation of CO2 efflux along a disturbance gradient in a miombo woodland in Western Zambia. Biogeosciences 8:147–164CrossRefGoogle Scholar
  58. Misson L, Rocheteau A, Rambal S, Ourcival J-M, Limousin J-M, Rodriguez R (2010) Functional changes in the control of carbon fluxes after 3 years of increased drought in a Mediterranean evergreen forest? Glob Change Biol 16:2461–2475Google Scholar
  59. Nouvellon Y, Epron D, Kinana A, Hamel O, Mabiala A, D’Annunzio R, Deleporte R, Saint-André L, Marsden C, Roupsard O, Bouillet J-P, Laclau J-P (2008) Soil CO2 effluxes, soil carbon balance, and early tree growth following savannah afforestation in Congo: comparison of two site preparation treatments. For Ecol Manag 255:1926–1936CrossRefGoogle Scholar
  60. Nsabimana D, Klemedtson L, Kaplin BA, Wallin G (2009) Soil CO2 flux in six monospecific forest plantations in Southern Rwanda. Soil Biol Biochem 41:396–402CrossRefGoogle Scholar
  61. Nzila J-D, Bouillet J-P, Laclau J-P, Ranger J (2002) The effects of slash management on nutrient cycling and tree growth in Eucalyptus plantations in the Congo. For Ecol Manag 171:209–221CrossRefGoogle Scholar
  62. Paul KI, Polglase PJ, Richard GP (2003) Predicted change in soil carbon following afforestation or reforestation, and analysis of controlling factors by linking a C accounting model (CAMFor) to models of forest growth (3PG), litter decomposition (GENDEC) and soil C turnover (RothC). For Ecol Manag 177:485–501CrossRefGoogle Scholar
  63. Piao S, Ciais P, Friedlingstein P, de Noblet-Ducoudre N, Cadule P, Viovy N, Wang T (2009) Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochem Cycles 23:1–16CrossRefGoogle Scholar
  64. Piechl M, Arain MA, Ullah S, Moore TM (2010) Carbon dioxide, methane, and nitrous oxide exchanges in an age-sequence of temperate pine forests. Glob Change Biol 16:2198–2212CrossRefGoogle Scholar
  65. Pingintha N, Leclerc MY, Beasley JP Jr, Zhang G, Senthong C (2010) Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient. Tellus 62B:47–58Google Scholar
  66. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327CrossRefGoogle Scholar
  67. Raich JW, Nadelhoffer KJ (1989) Belowground carbon allocation in forest ecosystems: global trends. Ecology 70:1346–1354CrossRefGoogle Scholar
  68. Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90CrossRefGoogle Scholar
  69. Reichstein M, Beer C (2008) Soil respiration across scales: the importance of a model–data integration framework for data interpretation. J Plant Nutr Soil Sci 171:344–354CrossRefGoogle Scholar
  70. Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis PG, Valentini R (2002) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob Change Biol 8:851–866CrossRefGoogle Scholar
  71. Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27CrossRefGoogle Scholar
  72. Ryan MG, Stape JL, Binkley D, Fonseca S, Loos RA, Takahashi EN, Silva CR, Silva SR, Hakamada RE, Ferreira JM, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC (2010) Factors controlling Eucalyptus productivity: how water availability and stand structure alter production and carbon allocation. For Ecol Manag 259:1695–1703CrossRefGoogle Scholar
  73. SAS Institute (1999) SAS/STAT software and enhancement, release 6.11, Edition Gary. SAS Institute Inc, CaryGoogle Scholar
  74. Saurette DD, Chang SX, Thomas BR (2008) Autotrophic and heterotrophic respiration rates across a chronosequence of hybrid poplar plantations in northern Alberta. Can J Soil Sci 88:261–272CrossRefGoogle Scholar
  75. Sayer EJ, Powers JS, Tanner EVJ (2007) Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoS One 12:e1299CrossRefGoogle Scholar
  76. Schaefer DA, Feng W, Zou X (2009) Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China. Soil Biol Biochem 41:1000–1007CrossRefGoogle Scholar
  77. Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20CrossRefGoogle Scholar
  78. Sheng H, Yang Y, Yang Z, Chen G, Xie J, Guo J, Zou S (2010) The dynamic response of soil respiration to land-use changes in subtropical China. Glob Change Biol 16:1107–1121CrossRefGoogle Scholar
  79. Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73:231–256CrossRefGoogle Scholar
  80. Thongo M’Bou A (2008) Etude du système racinaire de l’Eucalyptus en plantation tropicale : analyse architecturale, croissance et respiration. Ph.D. Thesis, Université Marien Ngouabi, Brazaville, p 181Google Scholar
  81. Thongo M’Bou A, Jourdan C, Deleporte P, Nouvellon Y, Saint-André L, Bouillet J-P, Mialoundama F, Mabiala A, Epron D (2008) Root elongation in tropical Eucalyptus plantations: effect of soil water content. Ann For Sci 65:609CrossRefGoogle Scholar
  82. van Straaten O, Veldkamp E, Kohler M, Anas I (2010) Spatial and temporal effects of drought on soil CO2 efflux in a cacao agroforestry system in Sulawesi, Indonesia. Biogeosciences 7:1223–1235CrossRefGoogle Scholar
  83. Vincent G, Shahriari AR, Lucot E, Badot P-M, Epron D (2006) Spatial and seasonal variations in soil respiration in a temperate deciduous forest with fluctuating water table. Soil Biol Biochem 38:2527–2535CrossRefGoogle Scholar
  84. Voigtlander M, Laclau J-P, Gonçalves JLM, Piccolo MC, Moreira MZ, NouvellonY, Ranger J, Bouillet J-P (2011) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant Soil. doi: 10.1007/s11104-011-0982-9
  85. Wang Y, Wang H, Ma Z, Wen X, Li Q, Liu Y, Sun X, Yu G (2009) Contribution of aboveground litter decomposition to soil respiration in a subtropical coniferous plantation in Southern China. Asia-Pac J Atmos Sci 45:137–147Google Scholar
  86. Wang X, Zhu B, Li C, Gao M, Wang Y, Zhou Z, Yuan H (2011) Dissecting soil CO2 fluxes from a subtropical forest in China by integrating field measurements with a modeling approach. Geoderma 161:88–94CrossRefGoogle Scholar
  87. Weintraub MN, Scott-Denton LE, Schmidt SK, Monson RK (2007) The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154:327–338CrossRefGoogle Scholar
  88. Wiseman PE, Seiler JR (2004) Soil CO2 efflux across four age classes of plantation loblolly pine (Pinus taeda L.) on the Virginia Piedmont. For Ecol Manag 192:297–311CrossRefGoogle Scholar
  89. Yan J, Wang Y, Zhou G, Zhang D (2006) Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Glob Change Biol 12:810–821CrossRefGoogle Scholar
  90. Yang Y-S, Chen G-S, Guo J-F, Xie J-S, Wang X-G (2007) Soil respiration and carbon balance in a subtropical native forest and two managed plantations. Plant Ecol 193:71–84CrossRefGoogle Scholar
  91. Yano Y, McDowell WH, Aber JD (2000) Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition. Soil Biol Biochem 32:1743–1751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yann Nouvellon
    • 1
    • 2
    • 6
  • Daniel Epron
    • 1
    • 3
    • 4
  • Claire Marsden
    • 1
  • Antoine Kinana
    • 2
  • Guerric Le Maire
    • 1
  • Philippe Deleporte
    • 1
    • 2
  • Laurent Saint-André
    • 1
  • Jean-Pierre Bouillet
    • 1
    • 5
  • Jean-Paul Laclau
    • 1
    • 5
  1. 1.CIRAD, UMR Eco&SolsMontpellier Cedex 2France
  2. 2.CRDPIPointe-NoireRepublic of Congo
  3. 3.Nancy Université, Université Henri Poincaré, UMR1137 Ecologie et Ecophysiologie ForestièresVandoeuvre les NancyFrance
  4. 4.INRA, UMR1137 Ecologie et Ecophysiologie ForestièresChampenouxFrance
  5. 5.USP, ESALQPiracicabaBrazil
  6. 6.Departamento de Ciências Atmosféricas, IAGUniversidade de São PauloSão PauloBrazil

Personalised recommendations