, Volume 110, Issue 1–3, pp 269–285 | Cite as

Evaluating DMS measurements and model results in the Northeast subarctic Pacific from 1996–2010

  • Nadja S. SteinerEmail author
  • Marie Robert
  • Michael Arychuk
  • Maurice L. Levasseur
  • Anissa Merzouk
  • M. Angelica Peña
  • Wendy A. Richardson
  • Philippe D. Tortell


About a decade of dimethylsulphide (DMS) measurements in the North East Pacific are summarized and compared to model simulations. Bottle samples at various depths have been taken three times per year along Line P from the British Columbia coast to Ocean Station Papa (145° W, 50° N). Despite the long timeseries, DMS measurements are still sparse and the data show large variabilities in concentrations both spatially and temporally. DMS concentrations in late summer have been consistently high, while spring measurements at the offshore stations suggest a downward trend over the past years. Low values in spring, however, have also been recorded in the late 1990s, which might hint to interannual variability in the onset of the spring bloom and/or plankton assemblage rather than to a response to recent climate change. Some of the variability, both short-term and interannual, can be caused by regional or local preconditioning of the physical environment. The model simulations provide examples where periods of low winds, shallow mixed layers and sometimes high irradiance follow a mixing event and cause DMS peaks on various time scales as well as consistently elevated DMS concentrations for longer timeperiods. The model in its current configuration, which has been calibrated with measurements in the late 1990s/early 2000s, is not able to capture the low values in winter and spring observed in recent years. We suggest that this is due to missing or misrepresented links in the biogeochemical parameterizations of the model, e.g., an incomplete representation of variations in the phytoplankton assemblage. Including a seasonally varying S:N ratio to account for the absence of dinoflagellates in winter and spring significantly improves the simulation. Variability in DMS concentrations can also be induced by natural iron fertilization, which the model reproduces when timing is specified. For example, the model can reproduce the effects of natural volcanic Fe fertilization on surface water plankton dynamics and mixed layer DMS accumulation. The model also shows that the amplitude of the short term variability (days) increases when DMSP producing phytoplankton are less iron limited.


DMS measurements DMS modelling Marine sulphur cycle Ocean Station Papa (OSP) 



We thank Martine Lizotte, C.S. Wong and Emmy Wong for their involvement in the DMS timeseries, Nina Nemcek for the analysis of HPLC samples, Lizzy Asher for sharing her insights into the MIMS data, and Ken Denman for his contributions to the development of the DMS model. We are grateful to the officers and crew of the CCGS John P. Tully for their assistance and cooperation. NCEP reanalysis data were kindly prepared by Steve Lambert. Argo data interpolated to OSP were kindly prepared by Howard Freeland. The latter were collected and made freely available by the International Argo project and the national programs that contribute to it (, The work was supported by grants from the Natural Sciences and Engineering Research Council (NSERC)(M. Levasseur, P. Tortell), as well as contributions from Environment Canada and from Fisheries and Oceans Canada.


  1. Archer D, Emerson S, Powell T, Wong C (1993) Numerical hindcasting of sea surface pCO2 at weathership Station Papa. Prog Oceanogr 32:319–351CrossRefGoogle Scholar
  2. Asher EC, Merzouk A, Tortell P (2011) Fine-scale spatial and temporal variability of surface water Dimethylsufide (DMS) concentrations and sea-air fluxes in the NE Subarctic Pacific. Mar Chem 126(1–4):63–75. doi: 10.1016/j.marchem.2011.03.009 CrossRefGoogle Scholar
  3. Belviso S, Bopp L, Moulin C, Orr JC, Anderson T, Aumont O, Chu S, Elliot S, Maltrud ME, Simó R (2004) Comparison of global climatological maps of sea surface dimethyl sulfide. Glob Biogeochem Cycles 18:GB3013. doi: 10.1029/2002GB002193 CrossRefGoogle Scholar
  4. Booth B, Lewin J, Postel J (1993) Temporal variation in the structure of autotrophic and heterotrophic communities in the sub-arctic Pacific. Prog Oceanogr 32(1–4):57–99CrossRefGoogle Scholar
  5. Boyd P, Harrison P (1999) Phytoplankton dynamics in the NE subarctic Pacific. Deep Sea Res II 46:2405–2432CrossRefGoogle Scholar
  6. Boyd P, Wong C, Merill J, Whitney F, Snow J, Harrison P, Gower J (1998) Atmospheric iron supply and enhanced vertical carbon flux in the NE subarctic Pacific: is there a connection. Glob Biogeochem Cycles 12(3):429–441CrossRefGoogle Scholar
  7. Boyd P, Law C, Wong C, Nojiri Y, Tsuda A, Levasseur M, Takeda S, Rivkin R, Harrison P, Strzepek R, Gower J, McKay M, Abraham E, Arychuk M, Barwell-Clarke J, Crawford W, Hale M, Harada K, Johnson K, Kiyosawa H, Kudo I, Marchetti A, Miller W, Needoba J, Nishioka J, Ogawa H, Page J, Robert M, Saito H, Sastri A, Sherry N, Soutar T, Sutherland N, Taira Y, Whitney F, Wong SKE, Yoshimura T (2004) The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature (428):549–552Google Scholar
  8. Burchard H, Bolding K, Villarreal MR (1999) GOTM–a general ocean turbulence model. Theory, applications and test cases. Tech Rep EUR 18745 EN, European CommissionGoogle Scholar
  9. Campolongo F, Gabric A (1997) The parametric sensitivity of dimethylsulfide flux in the southern ocean. J Stat Comput Simul 57:337–352CrossRefGoogle Scholar
  10. Cropp RA, Norbury J, Gabric AJ, Braddock RD (2004) Modeling dimethylsulphide production in the upper ocean. GlobBiogeochem Cycles 18:GB3005. doi: 10.1029/2003GB002126 CrossRefGoogle Scholar
  11. Denman KL, Miyake M (1973) Upper layer modification at Ocean Station Papa: observations and simulation. J Phys Oceanogr 3:185–196CrossRefGoogle Scholar
  12. Denman KL, Voelker C, Peña MA, Rivkin RB (2006) Modelling the ecosystem response to iron fertilization in the subarctic NE Pacific: the influence of grazing, and Si and N cycling on CO2 drawdown. Deep Sea Res II 53:2105–2121CrossRefGoogle Scholar
  13. DFO (2009) State of the Pacific Ocean 2009. Tech Rep 2010/034, DFO Can Sci Advis Sec Sci Advis RepGoogle Scholar
  14. Freeland HJ, Cummins PF (2005) Argo: a new tool for environmental monitoring and assessment of the world’s oceans, an example from the N.E. Pacific. Prog Oceanogr 64:31–44CrossRefGoogle Scholar
  15. Halloran P, Bell T, Totterdell I (2010) Can we trust empirical marine DMS parameterisations within projections of future climate. Biogeosciences 7:1645–1656. doi: 10.5194/bg-7-1645-2010 CrossRefGoogle Scholar
  16. Hamme RC, Webley PW, Crawford WR, Whitney FA, DeGrandpre MD, Emerson SR, Eriksen CC, Giesbrecht KE, Gower JFR, Kavanaugh MT, Peña MA, Sabine CL, Batten SD, Coogan LA, Grundle DS, Lockwood D (2010) Volcanic ash fuels anomalous plankton bloom in subarctic Northeast Pacific. Geophys Res Lett 37:L19604. doi: 10.1029/2010GL044629 CrossRefGoogle Scholar
  17. Harrison P (2006) SERIES (subarctic ecosystem response to iron enrichment study): a Canadian–Japanese contribution to our understanding of the iron-ocean-climate connection. Deep Sea Res II 53:2006–2011CrossRefGoogle Scholar
  18. Harrison P, Boyd P, Varela D, Takeda S, Shiomoto A, Odate T (1999) Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres. Prog Oceanogr 43:205–234CrossRefGoogle Scholar
  19. Jackson JM, Myers PG, Ianson D (2006) An examination of advection in the northeast Pacific Ocean 2001–2005. Geophys Res Lett 33:L15601. doi: 10.1029/2006GL026278 CrossRefGoogle Scholar
  20. Johnson WK, Miller LA, Sutherland NE, Wong C (2005) Iron transport by mesoscale Haida eddies in the Gulf of Alaska. Deep Sea Res II 52:933–953CrossRefGoogle Scholar
  21. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woolen J, Zhu Y, Leetma A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Jenne R, Josef D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  22. Keller M, Bellows W, Guillard R (1989) Dimethyl sulfide production in marine phytoplankton. Am Chem Soc Symp Ser 393:167–182Google Scholar
  23. Lam PJ, Bishop JK, Henning CC, Marcus MA, Waychunas GA, Fung IY (2006) Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron. Glob Biogeochem Cycles 20:GB1006. doi: 10.1029/2005GB002557 CrossRefGoogle Scholar
  24. Lana A, Bell T, Simo R, Vallina SM, Ballabrera-Poy SV, Kettle AJ, Dachs J, Bopp L, Saltzman E, Stefels J, Johnson J, Liss P (2011) An updated climatology of surface dimethylsulphide concentrations and emission fluxes in the global ocean. Glob Biogeochem Cycles 25:GB1004. doi: 10.1029/2010GB003850 CrossRefGoogle Scholar
  25. Le Clainche Y, Levasseur M, Vézina A, Bouillon RC, Merzouk A, Michaud S, Scarratt M, Wong CS, Rivkin RB, Boyd PW, Harrison PJ, Miller WL, Law CS, Saucier FJ (2006) Modeling analysis of the effect of iron enrichment on dimethylsulfide dynamics in the N.E. Pacific (SERIES experiment). J Phys Oceanogr 111:C01011. doi: 10.1029/2005JC002947 Google Scholar
  26. Le Clainche Y, Vézina A, Levasseur M, Cropp R, Gunson J, Vallina S, Vogt M, Lancelot C, Allen I, Archer S, Bopp L, Deal C, Elliott S, Jin M, Malin G, Schoemann V, Simó R, Six K, Stefels J (2010) A first appraisal of prognostic ocean DMS models and prospects for their use in climate simulation. Glob Biogeochem Cycles 24:GB3021. doi: 10.1029/2009GB003721 CrossRefGoogle Scholar
  27. Levasseur M, Scarratt M, Michaud S, Merzouk A, Wong CS, Arychuk M, Richardson W, Wong E, Marchetti A, Kivosawa H (2006) DMSP and DMS dynamics during a mesoscale iron fertilization experiment in the Northeast Pacific. Part I. Temporal and vertical distributions. Deep Sea Res II 53:2353–2369CrossRefGoogle Scholar
  28. Mackas D, Peterson W, Ohman M, Lavaniegos B (2006) Zooplankton anomalies in the california current system before and during the warm ocean conditions of 2005. Geophys Res Lett 33:L22S07. doi: 10.1029/2006GL027930 CrossRefGoogle Scholar
  29. Martin J, Gordon R, Fitzwater S, Broenkow W (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep Sea Res 36(5):649–680CrossRefGoogle Scholar
  30. Merzouk A, Levasseur M, Scarratt MG, Michaud S, Rivkin RB, Hale MS, Kiene RP, Price NM, Li WK (2006) DMSP and DMS dynamics during a mesoscale iron fertilization experiment in the Northeast Pacific. Part II: biological cycling. Deep Sea Res II 53:2370–2383CrossRefGoogle Scholar
  31. Monahan AH, Denman KL (2004) Impacts of atmospheric variability on a coupled upper-ocean/ecosystem model of the subarctic northeast Pacific. Glob Biogeochem Cycles 18:GB2010. doi: 10.1029/2003GB002100 CrossRefGoogle Scholar
  32. Moore J, Doney S, Glover D, Fung I (2002) Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep Sea Res II 49:463–507CrossRefGoogle Scholar
  33. Nishioka J, Takeda S, Wong C, Johnson W (2001) Size-fractionated iron concentrations in the northeast Pacific Ocean: distribution of soluble and small colloidal iron. Mar Chem 74:157–179CrossRefGoogle Scholar
  34. Nishioka J, Takeda S, Kudo I, Tsumune D, Yoshimura T, Kuma K, Tsuda A (2003) Size-fractionated iron distributions and iron-limitation processes in the subarctic NW Pacific. Geophys Res Lett 30(14):1730. doi: 10.1029/2002GL016853 CrossRefGoogle Scholar
  35. Peña MA, Varela DE (2007) Seasonal and interannual variability in phytoplankton and nutrient dynamics along Line P in the NE subarctic Pacific. Prog Oceanogr 75(2):200–222. doi: 10.1016/j.pocean.2007.08.009 CrossRefGoogle Scholar
  36. Royer SJ, Levasseur M, Lizotte M, Arychuk M, Scarratt MG, Wong CS, Lovejoy C, Robert M, Johnson K, Peña A, Michaud S, Kiene RP (2010) Microbial dimethylsulfoniopropionate (DMSP) dynamics along a natural iron gradient in the northeast subarctic pacific. Limnol Oceanogr 55(4):1614–1626. doi: 10.4319/lo.2010.55.4.1614 CrossRefGoogle Scholar
  37. Schäfer H, Myronova N, Boden R (2010) Microbial degradation of dimethylsulfide and related c1-sulfur compounds: organisms and pathways controlling fluxes of sulfur in the biosphere. J Exp Bot 61:315–334. doi: 10.1093/jxb/erp355 CrossRefGoogle Scholar
  38. Simó R, Dachs J (2002) Global ocean emission of dimethylsulfide predicted from biogeophysical data. Glob Biogeochem Cycles 16(4):1018. doi: 10.1029/2001GB001829 CrossRefGoogle Scholar
  39. Six KD, Maier-Reimer E (2006) What controls the oceanic dimethylsulfide (DMS) cycle. Glob Biogeochem Cycles 20:GB4011. doi: 10.1029/2005GB002674 CrossRefGoogle Scholar
  40. Stefels J, Steinke M, Turner S, Malin G, Belviso S (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulfide (DMS) and implications for ecosystem modelling. Biogeochemistry 83(1–3), 245–275. doi: 10.1007/s10533-007-9091-5 CrossRefGoogle Scholar
  41. Steiner N, Denman K (2008) Parameter sensitivities in a 1-d model for DMS and sulphur cycling in the upper ocean. Deep Sea Res I 55:847–865CrossRefGoogle Scholar
  42. Steiner N, Denman K, McFarlane N, Solheim L (2006) Simulating the atmosphere-ocean physical conditions and effects on the planktonic ecosystem response during SERIES. Deep Sea Res II 53:2434–2454CrossRefGoogle Scholar
  43. Steiner N, Vagle S, Denman K, McNeil C (2007) Oxygen and nitrogen cycling in the Northeast Pacific—simulations and observations at station Papa in 2003/2004. J Mar Res 65(3):441–469Google Scholar
  44. Tortell PD (2005) Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry. Limnol Oceanogr 3:24–37CrossRefGoogle Scholar
  45. Vallina S, Simo R (2007) Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315:506–508CrossRefGoogle Scholar
  46. Varela D, Harrison P (1999) Seasonal variability in nitrogenous nutrition of phytoplankton assemblages in the northeastern subarctic Pacific Ocean. Deep Sea Res II 46:2505–2538CrossRefGoogle Scholar
  47. Vézina A (2004) Ecosystem modelling of the cycling of marine dimethylsulfide: a review of current approaches and of the potential for extrapolation to global scales. Can J Fish Aquat Sci 61:845–856CrossRefGoogle Scholar
  48. von Salzen K, McFarlane N, Lazare M (2005) The role of shallow convection in the water and energy cycles of the atmosphere. Climate Dyn 25:671–688CrossRefGoogle Scholar
  49. Whitney FA, Crawford DW, Yoshimura T (2005a) The uptake and export of silicon and nitrogen in HNLC waters of the NE Pacific Ocean. Deep Sea Res II 52:1055–1067CrossRefGoogle Scholar
  50. Whitney FA, Crawford WR, Harrison PJ (2005b) Physical processes that enhance nutrient transport and primary productivity in the coastal and open ocean of the subarctic NE Pacific. Deep Sea Res II 52:681–706CrossRefGoogle Scholar
  51. Wong CS, Wong SE, Richardson WA, Smith GE, Arychuk MD, Page JS (2005) Temporal and spatial distribution of dimethylsulfide in the subarctic northeast Pacific Ocean: a high-nutrient-low-chlorophyll region. Tellus 57:317–331CrossRefGoogle Scholar
  52. Wong C, Wong SK, Peña A, Levasseur M (2006) Climatic effect on DMS producers in the NE sub-arctic Pacific: ENSO on the upper ocean. Tellus 58:319–326CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2011

Authors and Affiliations

  • Nadja S. Steiner
    • 1
    Email author
  • Marie Robert
    • 1
  • Michael Arychuk
    • 1
  • Maurice L. Levasseur
    • 2
  • Anissa Merzouk
    • 3
    • 4
  • M. Angelica Peña
    • 1
  • Wendy A. Richardson
    • 1
  • Philippe D. Tortell
    • 3
  1. 1.Institute of Ocean Sciences, Fisheries and Oceans CanadaSidneyCanada
  2. 2.Department of Biology (Quebec Ocean)University LavalQuebecCanada
  3. 3.University of British ColumbiaVancouverCanada
  4. 4.University LavalQuebecCanada

Personalised recommendations