, Volume 111, Issue 1–3, pp 347–360 | Cite as

Uptake of dissolved organic nitrogen by size-fractionated plankton along a salinity gradient from the North Sea to the Baltic Sea

  • Frederike Korth
  • Barbara Deutsch
  • Iris Liskow
  • Maren Voss


The Baltic Sea is known for its ecological problems due to eutrophication caused by high nutrient input via nitrogen fixation and rivers, which deliver up to 70% of nitrogen in the form of dissolved organic nitrogen (DON) compounds. We therefore measured organic nitrogen uptake rates using self produced 15N labeled allochthonous (derived from Brassica napus and Phragmites sp.) and autochthonous (derived from Skeletonema costatum) DON at twelve stations along a salinity gradient (34 to 2) from the North Sea to the Baltic Sea in August/September 2009. Both labeled DON sources were exploited by the size fractions 0.2–1.6 μm (bacteria size fraction) and >1.6 μm (phytoplankton size fraction). Higher DON uptake rates were measured in the Baltic Sea compared to the North Sea, with rates of up to 1213 nmol N l−1 h−1. The autochthonous DON was the dominant nitrogen form used by the phytoplankton size fraction, whereas the heterotrophic bacteria size fraction preferred the allochthonous DON. We detected a moderate shift from >1.6 μm plankton dominated DON uptake in the North Sea and central Baltic Sea towards a 0.2–1.6 μm dominated DON uptake in the Bothnian Bay and a weak positive relationship between DON concentrations and uptake. These findings indicate that DON is an important component of plankton nutrition and can fuel primary production. It may therefore also contribute substantially to eutrophication in the Baltic Sea especially when inorganic nitrogen sources are depleted.


Dissolved organic nitrogen Baltic Sea Nitrogen uptake Phytoplankton Heterotrophic bacteria 



The authors thank Falk Pollehne for providing ship time and the captain and crew of R/V Maria S. Merian. Furthermore we would like to thank Anna Hagenmeier for the nutrients and pigment analysis, Hans Peter Grossart for the amino acid measurements and Annett Grüttmüller for flow cytometry data. This study was greatly improved by the comments of three anonymous reviewers. The authors acknowledge the funding from the BONUS + EraNet Project AMBER (Assessment and Modelling of Baltic Ecosystem Response) by national funding agencies and the EU (BMBF Project number 03F0485A).

Supplementary material

10533_2011_9656_MOESM1_ESM.pdf (33 kb)
Supplementary material 1 (PDF 33 kb)


  1. Barlow RG, Cummings DG, Gibb SW (1997) Improved resolution of mono- and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC. Mar Ecol Prog Ser 161:303–307CrossRefGoogle Scholar
  2. Berg GM, Glibert PM, Jørgensen NOG, Balode M, Purina I (2001) Variability in inorganic and organic nitrogen uptake associated with riverine nutrient input in the Gulf of Riga, Baltic Sea. Estuaries 24:204–214CrossRefGoogle Scholar
  3. Berg GM, Balode M, Purina I, Bekere S, Béchemin C, Maestrini SY (2003a) Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen. Aquat Microb Ecol 30:263–274CrossRefGoogle Scholar
  4. Berg GM, Repeta DJ, LaRoche J (2003b) The role of the picoeukaryote Aureococcus anophagefferens in cycling of marine high-molecular weight dissolved organic nitrogen. Limnol Oceanogr 48:1825–1830CrossRefGoogle Scholar
  5. Berman T (1997) Dissolved organic nitrogen utilization by an Aphanizomenon bloom in Lake Kinneret. J Plankton Res 19:577–586CrossRefGoogle Scholar
  6. Berman T (2001) The role of DON and the effect of N:P ratios on occurrence of cyanobacterial blooms: implications from the outgrowth of Aphanizomenon in Lake Kinneret. Limnol Oceanogr 46:443–447CrossRefGoogle Scholar
  7. Berman T, Bronk DA (2003) Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquatic Microbial Ecol 31:279–305Google Scholar
  8. Bradley PB, Sanderson MP, Nejstgaard JC, Sazhin AF, Frischer ME, Killberg-Thoreson LM, Verity PG, Campbell L, Bronk DA (2010) Nitrogen uptake by phytoplankton and bacteria during an induced Phaeocystic pouchetii bloom, measured using size fractionation and flow cytometric sorting. Aquat Microb Ecol 61:89–104CrossRefGoogle Scholar
  9. Bronk DA (2002) Dynamics of DON. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Elsevier, London, pp 153–200CrossRefGoogle Scholar
  10. Bronk DA, Glibert PM (1993) Application of a 15 N tracer method to the study of dissolved organic nitrogen uptake during spring and summer in Chesapeake Bay. Mar Biol 115:501–508CrossRefGoogle Scholar
  11. Bronk DA, Ward BB (1999) Gross and net nitrogen uptake and DON release in the euphotic zone of Monterey Bay, California. Limnol Oceanogr 44(3):573–588CrossRefGoogle Scholar
  12. Bronk DA, See JH, Bradley P, Killberg L (2007) DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences 4:283–296CrossRefGoogle Scholar
  13. Carlsson P, Graneli E, Tester P, Boni L (1995) Influences of riverine humic substances on bacteria, protozoa, phytoplankton, and copepods in a coastal plankton community. Mar Ecol Prog Ser 127:13–221CrossRefGoogle Scholar
  14. Carlsson P, Graneli E, Segatto AZ (1999) Cycling of biologically available nitrogen in riverine humic substances between marine bacteria, a heterotrophic nanoflagellate and a photosynthetic dinoflagellate. Aquat Microb Ecol 18:23–36CrossRefGoogle Scholar
  15. Conley DJ, Björck S, Bonsdorff E, Carstensen J, Destouni G, Gustafsson BG, Hietanen S, Kortekaas M, Kuosa H, Meier HEM, Müller-Karulis B, Nordberg K, Norkko A, Nürrnberg G, Pitkänen H, Rabalais NN, Rosenberg R, Savchuk O, Slump CP, Voss M, Wulff F, Zillen L (2009) Hypoxia-related processes in the Baltic Sea. Environ Sci Technol 43:3412–3420CrossRefGoogle Scholar
  16. Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:169–206Google Scholar
  17. Elmgren R (2001) Understanding human impact on the baltic ecosystem: changing views in recent decades. Ambio 30:222–231Google Scholar
  18. Finni T, Kononen K, Olsonen R, Wallström K (2001) The history of cyanobacterial blooms in the Baltic Sea. Ambio 30:172–178Google Scholar
  19. Gasol JM, Casamayor EO, Joint I, Garde K, Gustavson K, Benlloch S, Díez B, Schauer M, Massana R, Pedrós-Alió C (2004) Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquat Microbiol Ecol 34:193–206CrossRefGoogle Scholar
  20. Glibert PM, Bronk DA (1994) Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria, Trichodesmium spp. Appl Environ Microbiol 60:3996–4000Google Scholar
  21. Graneli E, Wallstrom K, Larsson U, Graneli W, Elmgren R (1990) Nutrient limitation of primary production in the Baltic Sea Area. Ambio 19:142–151Google Scholar
  22. Grasshoff K (1983) Determination of nutrients. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis. Verlag Chemie, WeinheimGoogle Scholar
  23. Gurrath P (2009) Landwirtschaft in Deutschland und der Europäischen Union 2009. Statistisches Bundesamt, WiesbadenGoogle Scholar
  24. HELCOM (2005) Nutrient pollution to the Baltic Sea in 2000. Baltic Sea Environment Proceedings 100Google Scholar
  25. HELCOM (2009) Eutrophication in the Baltic Sea—an integrated thematic assessment of the effects of nutrient enrichment in the Baltic Sea region. Baltic Sea Environment Proceedings No 115BGoogle Scholar
  26. Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J (In press)Google Scholar
  27. Jones MN (1984) Nitrate reduction by shaking with cadmium: alternative to cadmium columns. Water Res 18:643–646CrossRefGoogle Scholar
  28. Jörgensen NOG, Tranvik LJ, Berg GM (1999) Occurrence and bacterial cycling of dissolved nitrogen in the Gulf of Riga, the Baltic Sea. Mar Ecol Prog Ser 191:1–18CrossRefGoogle Scholar
  29. Kester DR, Duedall IW, Connors DN, Pytkowic RM (1967) Preparation of artificial seawater. Limnol Oceanogr 12:176–179CrossRefGoogle Scholar
  30. Koroleff F (1983) Determination of total phosphorus. In: Grasshoff K, Erhardt M, Kremling K (eds) Methods for seawater analysis. Verlag Chemie, Weinheim, pp 167–173Google Scholar
  31. Lee S, Fuhrman JA (1987) Relationship between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53:1298–1303Google Scholar
  32. Lindroth P, Mopper K (1997) High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with O-phthaldialdehyde. Analitycal Chem 51:1667–1674CrossRefGoogle Scholar
  33. Løvdal T, Eichner T, Grossart H-P, Carbonnel V, Chou L, Thingstad TF (2008) Competition for inorganic and organic forms of nitrogen and phosphorous between phytoplankton and bacteria during an Emiliania huxleyi spring bloom (PeECE II). Biogeosciences 5:371–383CrossRefGoogle Scholar
  34. McCallister SL, Bauer JE, Canuel EA (2006) Bioreactivity of estuarine dissolved organic matter: a combined geochemical and microbiological approach. Limnol Oceanogr 51:94–100CrossRefGoogle Scholar
  35. Mulholland MR, Lomas MW (2008) Nitrogen uptake and assimilation. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment. Elsevier, New York, pp 303–384CrossRefGoogle Scholar
  36. Mulholland MR, Glibert PM, Berg GM, Van Heukelem L, Pantoja S, Lee C (1998) Extracellular amino acid oxidation by phytoplankton and cyanobacteria: a cross-ecosystem comparison. Aquat Microb Ecol 15:141–152CrossRefGoogle Scholar
  37. Mulholland MR, Bronk AB, Capone DG (2004) Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by trichodesmium IMS101. Aquat Microb Ecol 37:85–94CrossRefGoogle Scholar
  38. Nausch G, Nehring D, Nagel K (2008) Nutrient concentrations, trends and their relation to eutrophication. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, New Jersey, pp 337–366CrossRefGoogle Scholar
  39. Neumann T, Fennel W, Kremp C (2002) Experimental simulations with an ecosystem model of the Baltic Sea: a nutrient load reduction experiment. Global Biogeochem Cycles 16:7–19CrossRefGoogle Scholar
  40. Ohlendiek U, Stuhr A, Siegmund H (2000) Nitrogen fixation by diazotrophic cyanobacteria in the Baltic Sea and transfer of the newly fixed nitrogen to picoplankton organisms. J Mar Res 25:213–220Google Scholar
  41. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH (2007) Vegan: Community Ecology Package. R package version 1.8-7.
  42. Peierls BL, Paerl HW (1997) Bioavailability of atmospheric organic nitrogen deposition to coastal phytoplankton. Limnol Oceanogr 42:1819–1823CrossRefGoogle Scholar
  43. Petrone KC, Richards JS, Grierson PF (2009) Bioavailability and composition of dissolved organic carbon and nitrogen in a near coastal catchment of south-western Australia. Biogeochemistry 92:27–40CrossRefGoogle Scholar
  44. Pettersson C, Allard B, Boren H (1997) River discharge of humic substances and humic-bound metals to the Gulf of Bothnia. Estuar Coast Shelf Sci 44:533–541CrossRefGoogle Scholar
  45. Rolff C, Elmgren R, Voss M (2008) Deposition of nitrogen and phosphorus on the Baltic Sea: seasonal patterns and nitrogen isotope composition. Biogeosciences 5:1657–1667CrossRefGoogle Scholar
  46. Schlarbaum T, Daehnke K, Emeis K (2010) Turnover of combined dissolved organic nitrogen and ammonium in the Elbe estuary/NW Europe: results of nitrogen isotope investigations. Mar Chem 119:91–107CrossRefGoogle Scholar
  47. Schneider B, Kuss J (2004) Past and present productivity of the Baltic Sea as inferred from pCO2 data. Cont Shelf Res 24:1611–1622CrossRefGoogle Scholar
  48. See JH, Bronk DA, Lewitus AJ (2006) Uptake of Spartina-derived humic nitrogen by estuarine phytoplankton in nonaxenic and axenic culture. Limnol Oceanogr 51:2290–2299CrossRefGoogle Scholar
  49. Seitzinger P, Sanders RW (1997) Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Mar Ecol Prog Ser 159:1–12CrossRefGoogle Scholar
  50. Seitzinger SP, Sanders RW (1999) Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnol Oceanogr 44:721–730CrossRefGoogle Scholar
  51. Seitzinger SP, Sanders RW, Styles R (2002) Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnol Oceanogr 47:353–366CrossRefGoogle Scholar
  52. Sigman DM, Altabet MA, Michener R, McCorkle DC, Fry B, Holmes RM (1997) Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Mar Chem 57:227–242CrossRefGoogle Scholar
  53. Sommer F, Hansen T, Sommer U (2006) Transfer of diazotrophic nitrogen to mesozooplankton in Kiel Fjord, Western Baltic Sea: a mesocosm study. Mar Ecol Prog Ser 324:105–112CrossRefGoogle Scholar
  54. Stålnacke P, Grimvall A, Sundblad K, Tonderski A (1999) Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993. Environ Monit Assess 58:173–200CrossRefGoogle Scholar
  55. Stepanauskas R, Leonardson L, Tranvik LJ (1999a) Bioavailability of wetland derived DON to freshwater and marine bacterioplankton. Limnol Oceanogr 44:1477–1485CrossRefGoogle Scholar
  56. Stepanauskas R, Edling H, Tranvik LJ (1999b) Differential dissolved organic nitrogen availability and bacterial aminopeptidase activity in limnic and marine waters. Microb Ecol 38:264–272CrossRefGoogle Scholar
  57. Stepanauskas R, Laudon H, Jørgensen NOG (2000) High DON bioavailability in boreal streams during a spring flood. Limnol Oceanogr 45:1298–1307CrossRefGoogle Scholar
  58. Stepanauskas R, Joegensen NOG, Eigaard OR, Zvikas A, Tranvik LJ, Leonardson L (2002) Summer inputs of riverine nutrients to the Baltic Sea: bioavailability and eutrophication relevance. Ecol Monogr 72:579–597CrossRefGoogle Scholar
  59. Sweitzer J, Langaas S, Folke C (1996) Land use and population density in the Baltic Sea Drainage Basin: a GIS database. Ambio 25:191–198Google Scholar
  60. Tamminen T, Irmisch A (1996) Urea uptake kinetics of a midsummer planktonic community on the SW coast of Finland. Mar Ecol Prog Ser 130:201–211CrossRefGoogle Scholar
  61. Van Engeland TV, Soetaert K, Knuijt A, Laane RWPM, Middelburg JJ (2010) Dissolved organic nitrogen dynamics in the North Sea: a time series analysis (1995–2005). Estuar Coast Shelf Sci 89:31–42CrossRefGoogle Scholar
  62. Veuger B, Middelburg JJ, Boschker HTS, Nieuwenhuize J, Rijswijk Pv, Rochelle-Newall EJ, Navarro N (2004) Microbial uptake of dissolved organic and inorganic nitrogen in Randers Fjord. Estuar Coast Shelf Sci 61:507–515CrossRefGoogle Scholar
  63. Voss M, Emeis KC, Hille S, Neumann T, Dippner JW (2005) Nitrogen cycle of the Baltic Sea from an isotope perspective. Global Biogeochem Cycles 19:GB3001CrossRefGoogle Scholar
  64. Voss M, Dippner J, Humborg C, Hürdler J, Korth F, Neumann T, Schernewski G, Venohr M (2011) History and scenarios of future development of Baltic Sea eutrophication. Estuar Coast Shelf Sci 92:307–322CrossRefGoogle Scholar
  65. Wannicke N, Koch BP, Voss M (2009) Release of fixed N2 and C as dissolved compounds by Trichodesmium erythreum and Nodularia spumigena under the influence of high light and high nutrient (P). Aquat Microbiol Ecol 57:175–189CrossRefGoogle Scholar
  66. Wasmund N, Nausch G, Schneider B, Nagel K, Voss M (2005) Comparison of nitrogen fixation and primary production rates by different methods: a study in the Baltic proper. Mar Ecol Prog Ser 297:23–31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Frederike Korth
    • 1
  • Barbara Deutsch
    • 2
  • Iris Liskow
    • 1
  • Maren Voss
    • 1
  1. 1.Leibniz Institute for Baltic Sea ResearchRostockGermany
  2. 2.Department of Applied Environmental SciencesStockholm UniversityStockholmSweden

Personalised recommendations