Biogeochemistry

, Volume 111, Issue 1–3, pp 287–302

Winter CO2 fluxes in a sub-alpine grassland in relation to snow cover, radiation and temperature

Article

Abstract

Carbon dioxide (CO2) emissions were measured over a period of 3 years at the sub-alpine Swiss CARBOMONT site Rigi Seebodenalp. Here we show, that winter respiration contributes larger than expected to the annual CO2 budget at this high altitude, rich in belowground organic carbon grassland (7–15% C by mass). Furthermore the contribution of winter emissions to the annual CO2 budget is highly dependent on the definition of “winter” itself. Cumulative winter respiration determined over a 6 month period from 15th of October until 15th of April contributed 23.3 ± 2.4 and 6.0 ± 0.3% to the annual respiration during the years under observation, respectively. The insulation effect of snow and a lowering of the freezing point caused by high concentrations of soil organic solutes prevented the soil from freezing. These conditions favored higher soil temperatures resulting in relatively high respiratory losses. The duration of snow cover and micrometeorological conditions determining the photosynthetic activity of the vegetation during snow-free periods influenced the size and the variability of the winter CO2 fluxes. Seasonal values are strongly influenced by the days at the end and the beginning of the defined winter period, caused by large variations in length of periods with air temperatures below freezing. Losses of CO2 from the snow-covered soil were highest in winter 2003/2004. These high losses were partially explained by higher temperatures in the topsoil, caused by higher air temperatures just before snowfall. Thus, losses are not a consequence of higher soil temperatures registered during the summer heat wave 2003. However, water stress in summer 2003 might have caused an increment in dead organic matter in the soil providing additional substrate for microbial respiration in the following winter. Although considerable day-to-day fluctuations in snow effluxes were recorded, no conclusive and generally valid relationship could be found between CO2 losses from the snow pack and snow depth, rate of snow melt, wind speed or air pressure. This suggests that time lags and hysteresis effects may be more important for understanding winter respiration than concurrent environmental conditions in most ecosystems of comparable type.

Keywords

Cold season respiration Eddy covariance Pastoral grazing ecosystems Mountain regions CARBOMONT Snow efflux Heat-wave 2003 

References

  1. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer Ch, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard C, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175CrossRefGoogle Scholar
  2. Aurela M, Laurila T, Tuovinen JP (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys Res Lett 31(16):4CrossRefGoogle Scholar
  3. Aurela M, Lohila A, Tuovinen JP, Hatakka J, Riutta T, Laurila T (2009) Carbon dioxide exchange on a northern boreal fen. Boreal Environ Res 14(4):699–710Google Scholar
  4. Baldocchi DD (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26CrossRefGoogle Scholar
  5. Baldocchi DD, Bowling DR (2003) Modelling the discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly and seasonal time scales. Plant Cell Environ 26(2):231–244CrossRefGoogle Scholar
  6. Baldocchi DD, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, KTP U, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434CrossRefGoogle Scholar
  7. Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia 110(3):403–413Google Scholar
  8. Brooks PD, McKnight D, Elder K (2004) Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Glob Change Biol 11:231–238CrossRefGoogle Scholar
  9. Bubier J, Crill P, Mosedale A (2002) Net ecosystem CO2 exchange measured by autochambers during the snow-covered season at a temperate peatland. Hydrol Process 16(18):3667–3682CrossRefGoogle Scholar
  10. Cernusca A, Bahn M, Berninger F, Tappeiner U, Wohlfahrt G (2008) Effects of land-use changes on sources, sinks and fluxes of carbon in European mountain grasslands. Ecosystems 11(8):1335–1337. doi:10.1007/s10021-008-9202-8 CrossRefGoogle Scholar
  11. Christensen TR, Friborg T, Sommerkorn M, Kaplan J, Illeris L, Soegaard H, Nordstroem C, Jonasson S (2000) Trace gas exchange in a high-arctic valley 1. Variations in CO2 and CH4 flux between tundra vegetation types. Glob Biogeochem Cycles 14(3):701–713CrossRefGoogle Scholar
  12. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533CrossRefGoogle Scholar
  13. Edwards AC, Cresser MS (1992) Freezing and its effect on chemical and biological properties of soil. In: Stewart BA (ed) Advances in soil science, vol 18. Springer, New York, pp 59–79Google Scholar
  14. Eugster W, Senn W (1995) A cospectral correction model for measurement of turbulent NO2 flux. Boundary-Layer Meteorol 74(4):321–340CrossRefGoogle Scholar
  15. Fahnestock JT, Jones MH, Welker JM (1999) Wintertime CO2 efflux from arctic soils: implications for annual carbon budgets. Glob Biogeochem Cycles 13(3):775–779CrossRefGoogle Scholar
  16. Flanagan LB, Wever LA, Carlson PJ (2002) Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Glob Change Biol 8(7):599–615CrossRefGoogle Scholar
  17. Frank AB, Dugas WA (2001) Carbon dioxide fluxes over a northern, semiarid, mixed-grass prairie. Agric For Meteorol 108(4):317–326CrossRefGoogle Scholar
  18. Franzluebbers AJ, Haney RL et al (2000) Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Sci Soc Am J 64(2):613–623CrossRefGoogle Scholar
  19. Gilmanov TG, Johnson DA, Saliendra NZ (2003) Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: bowen ratio/energy balance measurements and modeling. Basic Appl Ecol 4(2):167–183CrossRefGoogle Scholar
  20. Gilmanov TG, Johnson DA, Saliendra NZ, Svejcar TJ, Angell RF, Clawson KL (2004) Winter CO2 fluxes above sagebrush-steppe ecosystems in Idaho and Oregon. Agric For Meteorol 126(1–2):73–88CrossRefGoogle Scholar
  21. Grogan P, Illeris L, Michelsen A, Jonasson S (2001) Respiration of recently-fixed plant carbon dominates mid-winter ecosystem CO2 production in sub-arctic heath tundra. Clim Change 50(1–2):129–142CrossRefGoogle Scholar
  22. Haebleri W (1973) Die Basis-Temperatur der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost in den Alpen. Zietschrift für Gletscherkunde und Glazialgeologie XI(1–2):221–227Google Scholar
  23. Ham JM, Knapp AK (1998) Fluxes of CO2, water vapor and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source. Agric For Meteorol 89(1):1–14CrossRefGoogle Scholar
  24. Hardy JP, Groffman PM, Fitzhugh RD, Henry KS, Welman AT, Demers JD, Fahey TJ, Driscoll CT, Tierney GL, Nolan S (2001) Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry 56(2):151–174CrossRefGoogle Scholar
  25. Hirano T (2005) Seasonal and diurnal variations in topsoil and subsoil respiration under snowpack in a temperate deciduous forest. Glob Biogeochem Cycles 19:GB2011. doi:10.1029/2004GB002259 CrossRefGoogle Scholar
  26. Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Global Chang Biol 6:196–210. doi:10.1046/j.1365-2486.2000.06021.x Google Scholar
  27. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. IPCC, CambridgeGoogle Scholar
  28. Johnson PL, Kelley JJ (1970) Dynamics of carbon dioxide and productivity in an arctic biosphere. Ecology 51(1):51:73–80. doi:10.2307/1933600 Google Scholar
  29. Jones MH, Fahnestock JT, Walker DA, Walker MD, Welker JM (1998) Carbon dioxide fluxes in moist and dry arctic tundra during season: responses to increases in summer temperature and winter snow accumulation. Arct Alp Res 30(4):373–380CrossRefGoogle Scholar
  30. Jones MH, Fahnestock JT, Welker JM (1999) Early and late winter CO2 efflux from arctic tundra in the Kuparuk River watershed, Alaska, USA. Arct Antarct Alp Res 31(2):187–190CrossRefGoogle Scholar
  31. Kelley JJ, Weaver DF, Smith BP (1968) Variation of carbon dioxide under snow in the arctic. Ecology 49(2):358–361CrossRefGoogle Scholar
  32. Kutzbach L, Wille C, Pfeiffer EM (2007) The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia. Biogeosciences 4(5):869–890. doi:10.5194/bg-4-869-2007 CrossRefGoogle Scholar
  33. Lafleur PM, Humphreys ER (2008) Spring warming and carbon dioxide exchange over low arctic tundra in central Canada. Glob Change Biol 14(4):740–756CrossRefGoogle Scholar
  34. Lafleur PM, Roulet NT, Admiral SW (2001) Annual cycle of CO2 exchange at a bog peatland. J Geophys Res Atmos 106(D3):3071–3081CrossRefGoogle Scholar
  35. Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modeling Nr.20 (2nd edn). Elsevier, AmsterdamGoogle Scholar
  36. Li SG, Asanuma J, Eugster W, Kotani A, Liu JJ, Urano T, Oikawa T, Davaa G, Oyunbaatar D, Sugita M (2005) Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Glob Change Biol 11(11):1941–1955Google Scholar
  37. Liptzin D, Williams MW, Helmig D, Seok B, Filippa G, Chowanski K, Hueber J (2009) Process-level controls on CO2 fluxes from seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado. Biogeochemistry 95:151–166. doi:10.1007/s10533-009-9303-2 CrossRefGoogle Scholar
  38. Luetsch M, Stoeckli V, Lehning M, Haeberli W, Ammann W (2004) Temperatures in two boreholes at Fluela Pass, Eastern Swiss Alps: the effect of snow redistribution on permafrost distribution patterns in high mountain areas. Permafr Periglac Process 15(3):283–297CrossRefGoogle Scholar
  39. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303(5663):1499–1503CrossRefGoogle Scholar
  40. Mariko S, Nishimura N, Mo WH, Matsui Y, Kibe T, Koizumi H (2000) Winter CO2 flux from soil and snow surfaces in a cool-temperate deciduous forest, Japan. Ecol Res 15(4):363–372CrossRefGoogle Scholar
  41. Mast MA, Wickland KP, Striegl RT, Clow DW (1998) Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado. Glob Biogeochem Cycles 12(4):607–620. doi:10.1029/98GB02313
  42. Mauder M, Foken T, Clement R, Elbers A, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2008) Quality control of CarboEurope flux data. Part 2: inter-comparison of eddy-covariance software. Biogeosciences 5:451–462. doi:10.5194/bg-5-451-2008,2008 CrossRefGoogle Scholar
  43. McMillen RT (1988) An eddy-correlation technique with extend applicability to non-simple terrain. Boundary-Layer Meteorol 43(3):231–245CrossRefGoogle Scholar
  44. Merbold L, Kutsch WL, Corradi C, Kolle O, Rebmann C, Stoy PC, Zimov SA, Schulze ED (2009) Artificial drainage and associated carbon fluxes (CO2/CH4) in a tundra ecosystem. Glob Change Biol 15(11):2599–2614CrossRefGoogle Scholar
  45. Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biogeochem 34(11):1785–1795CrossRefGoogle Scholar
  46. Müller (2004) Bodenatmung auf der Seebodenalp während der Vegetationsperiode 2003. Master’s thesis, Institute of Geography, University of BernGoogle Scholar
  47. Nadelhoffer KJ, Giblin AE et al (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72(1):242–253CrossRefGoogle Scholar
  48. Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of arctic tundra ecosystems from a net carbon-dioxide sink to a source. Nature 361(6412):520–523CrossRefGoogle Scholar
  49. Oechel WC, Vourlitis G, Hastings SJ (1997) Cold season CO2 emission from arctic soils. Glob Biogeochem Cycles 11(2):163–172CrossRefGoogle Scholar
  50. Osterkamp TE, Romanovsky VE (1997) Freezing of the active layer on the coastal plain of the Alaskan Arctic. Permafr Periglac Process 8(1):23–44CrossRefGoogle Scholar
  51. Panikov NS, Dedysh SN (2000) Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): winter fluxes and thaw activation dynamics. Glob Biogeochem Cycles 14(4):1071–1080CrossRefGoogle Scholar
  52. Prieme A, Christensen S (2001) Natural perturbations, drying-wetting and freezing-thawing cycles, and the emissions of nitrous oxide, carbondioxide and methane from farmed organic soils. Soil Biol Biogeochem 33(15):2083–2091CrossRefGoogle Scholar
  53. Reichstein M, Rey A, Freibauer A et al (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob Biogeochem Cycles 17:1104. doi:10.1029/2003GB002035 CrossRefGoogle Scholar
  54. Reichstein M, Subke JA, Angeli AC, Tenhunen JD (2005) Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? Glob Change Biol 11:1754–1767CrossRefGoogle Scholar
  55. Reutlinger F (2004) Zusammensetzung und Produktivität der Weidevegetation am Standort Seebodenalp. Master’s thesis, Institute of Plant Sciences, ETH ZürichGoogle Scholar
  56. Rogiers N, Eugster W, Furger M, Siegwolf R (2005) Effect of land management on ecosystem carbon fluxes at a subalpine grassland site in the Swiss Alps. Theor Appl Climatol 80(2–4):187–203CrossRefGoogle Scholar
  57. Rogiers N, Conen F, Furger M, Stöckli R, Eugster W (2008) Impact of past and present land-management on the C-balance of a grassland in the Swiss Alps. Glob Change Biol 14(11):2613–2625Google Scholar
  58. Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995) CO2 fluxes over plant canopies and solar radiation: a review. In: Begon M, Fitter AH (eds) Advances in ecological research. Academic Press, New York, pp 1–68Google Scholar
  59. Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301(5638):1359–1361CrossRefGoogle Scholar
  60. Schär C, Jendritzky G (2004) Hot news from summer 2003. Nature 432:559–560Google Scholar
  61. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger M, Appenzeller C (2004) The role of increasing temperature variability in European summer heat waves. Nature 427:332–336Google Scholar
  62. Schimel JP, Clein JS (1996) Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol Biochem 28(8):1061–1066CrossRefGoogle Scholar
  63. Schimel D, Kittel TGF, Running S, Monson R, Turnispeed AA, Anderson DE (2002) Carbon sequestration studied in western U.S. mountains. EOS Trans Am Geophys Union 83(40):445CrossRefGoogle Scholar
  64. Schmid HP, Grimmond CSB, Cropley F, Offerle B, Su HB (2000) Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric For Meteorol 103(4):357–374CrossRefGoogle Scholar
  65. Schmidt DS, Schmidt RA, Dent JD (1999) Electrostatic force in blowing snow. Boundary-Layer Meteorol 93:29–45CrossRefGoogle Scholar
  66. Sevanto S, Suni T, Pumpanen J, Grönholm T, Kolari P, Nikinmaa E, Hari P, Vesala T (2006) Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol 26:749–757Google Scholar
  67. Shibistova O, Lloyd J, Evgrafova S, Savushkina N, Zrazhevskaya G, Arneth A, Knohl A, Kolle O, Schulze ED (2002) Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus B Chem Phys Meteorol 54(5):552–567CrossRefGoogle Scholar
  68. Skogland T, Lomeland S, Goksoyr J (1988) Respiratory burst after freezing and thawing of soil: experiments with soil bacteria. Soil Biol Biogeochem 20(6):851–856CrossRefGoogle Scholar
  69. Sommerfeld RA, Mosier RA, Musselmann RC (1993) CO2, CH4, N2O flux through a Wyoming snowpack and implications for global budgets. Nature 361(6408):140–142CrossRefGoogle Scholar
  70. Sommerfeld RA, Massman WJ, Musselman RC, Mosier AR (1996) Diffusional flux of CO2 through snow: spatial and temporal variability among alpine-subalpine sites. Glob Biogeochem Cycles 10(3):473–482CrossRefGoogle Scholar
  71. Suni T, Rinne J, Reissell A, Altimir N, Keronen P, Rannik Ü, Dal Maso M, Kulmala M, Vesala T (2003) Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, Southern Finland, 1996–2001. Boreal Environ Res 8(4):287–301Google Scholar
  72. Suyker AE, Verma SB (2001) Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Glob Change Biol 7(3):279–289CrossRefGoogle Scholar
  73. Swanson AL, Lefer BL, Stroud V, Atlas E (2005) Trace gas emissions through a winter snowpack in the subalpine ecosystem at Niwot Ridge, Colorado. Geophys Res Lett 32(3):5CrossRefGoogle Scholar
  74. Vogel A, Hantke R (1989) Rigi: Zur Geologie des Rigigebietes. Mitteilungen der Naturforschenende Gesellschaft (Luzern)Google Scholar
  75. Volk M, Niklaus PA (2002) Respiratory carbon loss of calcareus grasslands in winter shows no effect of 4 years’ CO2 enrichment. Funct Ecol 16(2):162–166CrossRefGoogle Scholar
  76. Vourlitis GL, Oechel WC (1999) Eddy covariance measurements of CO2 and energy fluxes of an Alaskan tussock tundra ecosystem. Ecology 80(2):686–701CrossRefGoogle Scholar
  77. Walker MD, Walker DA, Welker JM, Arft AM, Bardsley T, Brooks PD, Fahnestock JT, Jones MH, Losleben M, Parsons AN, Seastedt TR, Turner PL (1999) Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra. Hydrol Process 13(14–15):2315–2330CrossRefGoogle Scholar
  78. Wang T, Ciais P, Piao SL, Ottlé C, Brender P, Maignan F, Arain A, Cescatti A, Gianelle D, Gough C, Gu L, Lafleur P, Laurila T, Marcolla B, Margolis H, Montagnani L, Moors E, Saigusa N, Vesala T, Wohlfahrt G, Koven C, Black A, Dellwik E, Don A, Hollinger D, Knohl A, Monson R, Munger J, Suyker A, Varlagin A, Verma S (2011) Controls on winter ecosystem respiration in temperate and boreal ecosystems. Biogeosciences 8:2009–2025. doi:10.5194/bg-8-2009-2011 CrossRefGoogle Scholar
  79. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106:85–100CrossRefGoogle Scholar
  80. Welker JM, Fahnestock JT, Jones MH (2000) Annual CO2 flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth. Clim Change 44(1–2):139–150CrossRefGoogle Scholar
  81. Wickland KP, Striegl RG, Mast MA, Clow DW (2001) Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998. Glob Biogeochem Cycles 15(2):321–335CrossRefGoogle Scholar
  82. Winston GC, Sundquist ET, Stephens BB, Trumbore SE (1997) Winter CO2 fluxes in a boreal forest. J Geophys res-Atmos 102:28795–28804. doi:10.1029/97JD01115 Google Scholar
  83. Zeeman MJ, Hiller R, Gilgen AK, Michna P, Plüss P, Buchmann N, Eugster W (2010) Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agric For Meteorol 150(4):519–530CrossRefGoogle Scholar
  84. Zhuang QL, Melillo JM, Sarofim MC, Kicklighter DW, McGuire AD, Felzer BS, Sokolov A, Prinn RG, Steudler PA, Hu SM (2006) CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys Res Lett 33(17):L17403Google Scholar
  85. Zimov SA, Semiletov IP, Davidov SP, Voropaev YV, Prosyannikov CF, Wong SC, Chan YH (1993) Wintertime CO2 emission from soil of northeastern Siberia. Arctic 46:197–204Google Scholar
  86. Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS (2006) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys Res Lett 33(20):L20502Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Grassland Sciences Group, Institute of Agricultural SciencesETH ZurichZurichSwitzerland
  2. 2.Laboratory of Atmospheric ChemistryPaul Scherrer InstituteVilligen PSISwitzerland
  3. 3.Institute of GeographyUniversity of BernBernSwitzerland

Personalised recommendations