, Volume 109, Issue 1–3, pp 7–18 | Cite as

Integrating microbial ecology into ecosystem models: challenges and priorities

  • Kathleen K. TresederEmail author
  • Teri C. Balser
  • Mark A. Bradford
  • Eoin L. Brodie
  • Eric A. Dubinsky
  • Valerie T. Eviner
  • Kirsten S. Hofmockel
  • Jay T. Lennon
  • Uri Y. Levine
  • Barbara J. MacGregor
  • Jennifer Pett-Ridge
  • Mark P. Waldrop


Microbial communities can potentially mediate feedbacks between global change and ecosystem function, owing to their sensitivity to environmental change and their control over critical biogeochemical processes. Numerous ecosystem models have been developed to predict global change effects, but most do not consider microbial mechanisms in detail. In this idea paper, we examine the extent to which incorporation of microbial ecology into ecosystem models improves predictions of carbon (C) dynamics under warming, changes in precipitation regime, and anthropogenic nitrogen (N) enrichment. We focus on three cases in which this approach might be especially valuable: temporal dynamics in microbial responses to environmental change, variation in ecological function within microbial communities, and N effects on microbial activity. Four microbially-based models have addressed these scenarios. In each case, predictions of the microbial-based models differ—sometimes substantially—from comparable conventional models. However, validation and parameterization of model performance is challenging. We recommend that the development of microbial-based models must occur in conjunction with the development of theoretical frameworks that predict the temporal responses of microbial communities, the phylogenetic distribution of microbial functions, and the response of microbes to N enrichment.


Community composition Functional groups Global change Nitrogen Precipitation Temporal dynamics Warming 



We are grateful for the intellectual contributions of the participants of the “Micro/Macroscale” workshop: S. D. Allison, K. L. Amatangelo, D. J. Bradley, N. Cavallaro, A. R. Contosta, N. Fierer, S. D. Frey, M. E. Gallo, A. S. Grandy, C. V. Hawkes, K. Lloyd, K. D. McMahon, S. K. McMahon, J. S. Powers, J. P. Schimel, A. Shade, W. L. Silver, R. L. Sinsabaugh, and M. S. Strickland. This work was sponsored by grants from the US National Science Foundation Division of Environmental Biology to TCB and KKT.


  1. Allison SD & Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. doi: 10.1073/pnas.0801925105
  2. Allison SD, Treseder KK (2008) Warming suppresses microbial activity and carbon cycling in boreal forest soils. Glob Change Biol 14:2898–2909CrossRefGoogle Scholar
  3. Allison SD, Czimczik CI, Treseder KK (2008) Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob Change Biol 14:1156–1168CrossRefGoogle Scholar
  4. Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340CrossRefGoogle Scholar
  5. Balser TC, Kinzig AP, Firestone MK (2002) Linking soil communities and ecosystem functioning. In: Kinzig AP, Pacala SW, Tilman D (eds) The functional consequence of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton, NJ, pp 265–293Google Scholar
  6. Balser TC, McMahon KD, Bart D, Bronson D, Coyle DR, Craig N, Flores-Mangual ML, Forshay K, Jones SE, Kent AE, Shade AL (2006) Bridging the gap between micro- and macro-scale perspectives on the role of microbial communities in global change ecology. Plant Soil 289:59–70CrossRefGoogle Scholar
  7. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755CrossRefGoogle Scholar
  8. Bell JL, Sloan LC, Snyder MA (2004) Regional changes in extreme climatic events: a future climate scenario. J Clim 17:81–87CrossRefGoogle Scholar
  9. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160CrossRefGoogle Scholar
  10. Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327CrossRefGoogle Scholar
  11. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007CrossRefGoogle Scholar
  12. Cavigelli MA, Robertson GP (2000) The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology 81:1402–1414CrossRefGoogle Scholar
  13. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge; New York, NYGoogle Scholar
  14. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609Google Scholar
  15. Cruz-Martinez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3:738–744CrossRefGoogle Scholar
  16. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefGoogle Scholar
  17. Degens BP (1998) Decreases in microbial functional diversity do not result in corresponding changes in decomposition under different moisture conditions. Soil Biol Biochem 30:1989–2000CrossRefGoogle Scholar
  18. Eliasson PE, McMurtrie RE, Pepper DA, Stromgren M, Linder S, Agren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Change Biol 11:167–181CrossRefGoogle Scholar
  19. Evans SE, Wallenstein MD (2011) Soil microbial community response to drying and rewetting stress: do microorganisms adapt to altered rainfall timing? Biogeochemistry. doi: 10.1007/s10533-011-9638-3
  20. Fernandez AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB, Hickey RF, Criddle CS, Tiedje JM (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66:4058–4067CrossRefGoogle Scholar
  21. Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787CrossRefGoogle Scholar
  22. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364CrossRefGoogle Scholar
  23. Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev Camb Philos Soc 63:433–462CrossRefGoogle Scholar
  24. Frey SD, Drijber R, Smith H, Melillo J (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907CrossRefGoogle Scholar
  25. Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 Years of change. AMBIO: J Hum Environ 31:64–71Google Scholar
  26. Gerber S, Hedin LO, Oppenheimer M, Pacala SW, Shevliakova E (2010) Nitrogen cycling and feedbacks in a global dynamic land model. Glob Biogeochem Cycle 24:GB1001CrossRefGoogle Scholar
  27. Green JL, Bohannan BJM, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039–1043CrossRefGoogle Scholar
  28. Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sorensen SJ, Baath E, Bloem J, de Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90:279–294CrossRefGoogle Scholar
  29. Haider K, Martin JP (1967) Synthesis and transformation of phenolic compounds by Epicoccum nigrum in relation to humic acid formation. Proc Soil Sci Soc Am 31:766–772CrossRefGoogle Scholar
  30. Hall SJ, Matson PA (1999) Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature 400:152–155CrossRefGoogle Scholar
  31. Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008) Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol Lett 11:1092–1100CrossRefGoogle Scholar
  32. Hawkes CV, Kivlin SN, Rocca JD, Huguet V, Thomsen MA, Suttle KB (2011) Fungal community responses to precipitation. Glob Change Biol 17:1637–1645CrossRefGoogle Scholar
  33. Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020CrossRefGoogle Scholar
  34. Herman J, Moorhead D, Berg B (2008) The relationship between rates of lignin and cellulose decay in aboveground forest litter. Soil Biol Biochem 40:2620–2626CrossRefGoogle Scholar
  35. Hobbie SE (2008) Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology 89:2633–2644CrossRefGoogle Scholar
  36. Hodge JE (1953) Chemistry of browning reactions in model systems. J Agric Food Chem 1:928–943CrossRefGoogle Scholar
  37. Holland EA, Bertman SB, Carroll MA, Guenther AB, Shepson PB, Sparks JP, Barney K, Lee-Taylor JM (2004) A US nitrogen science plan : atmospheric-terrestrial exchange of reactive nitrogen. UCAR, Boulder, p 38Google Scholar
  38. Holland EA, Braswell BH, Sulzman J, Lamarque JF (2005) Nitrogen deposition onto the United States and western Europe: synthesis of observations and models. Ecol Appl 15:38–57CrossRefGoogle Scholar
  39. IPCC (2007) Climate change 2007: the physical science basis, summary for policymakers. Intergovernmental Panel on Climate Change, Paris, GenevaGoogle Scholar
  40. Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nature Geosci 3:315–322CrossRefGoogle Scholar
  41. Jarvis P, Linder S (2000) Botany—constraints to growth of boreal forests. Nature 405:904–905CrossRefGoogle Scholar
  42. Joergensen RG, Brookes PC, Jenkinson DS (1990) Survival of the soil microbial biomass at elevated temperatures. Soil Biol Biochem 22:1129–1136CrossRefGoogle Scholar
  43. Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12:1–15CrossRefGoogle Scholar
  44. Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O’Donnell AG, Brookes PC (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol Biochem 40:61–73CrossRefGoogle Scholar
  45. Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211CrossRefGoogle Scholar
  46. Kirschbaum MUF (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob Change Biol 10:1870–1877CrossRefGoogle Scholar
  47. Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257CrossRefGoogle Scholar
  48. Lawrence CR, Neff JC, Schimel JP (2009) Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment. Soil Biol Biochem 41:1923–1934CrossRefGoogle Scholar
  49. Lecerf A, Chauvet E (2008) Diversity and functions of leaf-decaying fungi in human-altered streams. Freshw Biol 53:1658–1672CrossRefGoogle Scholar
  50. Levine UY, Teal TK, Robertson GP, Schmidt TM (2011) Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J. doi: 10.1038/ismej.2011.40
  51. Lopez-Urrutia A, Moran XAG (2007) Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology 88:817–822CrossRefGoogle Scholar
  52. Luo Y, Wan S, Hui D, Wallace LL (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625CrossRefGoogle Scholar
  53. Lutgen ER, Muir-Clairmont D, Graham J, Rillig MC (2003) Seasonality of arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland. Plant Soil 257:71–83CrossRefGoogle Scholar
  54. McAndrew DW, Malhi SS (1992) Long-term N fertilization of a Solonetzic soil—effects on chemical and biological properties. Soil Biol Biochem 24:619–623CrossRefGoogle Scholar
  55. McGuire KL, Treseder KK (2010) Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535CrossRefGoogle Scholar
  56. McGuire KL, Bent E, Borneman J, Majumder A, Allison SD, Treseder KK (2010) Functional diversity in resource use by fungi. Ecology 91:2324–2332CrossRefGoogle Scholar
  57. Melillo JM, Borchers J, Chaney J, Fisher H, Fox S, Haxeltine A, Janetos A, Kicklighter DW, Kittel TGF, McGuire AD, McKeown R, Neilson R, Nemani R, Ojima DS, Painter T, Pan Y, Parton WJ, Pierce L, Pitelka L, Prentice C, Rizzo B, Rosenbloom NA, Running S, Schimel DS, Sitch S, Smith T, Woodward I (1995) Vegetation ecosystem modeling and analysis project-comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Glob Biogeochem Cycles 9:407–437CrossRefGoogle Scholar
  58. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176CrossRefGoogle Scholar
  59. Miller AE, Schimel JP, Meixner T, Sickman JO, Melack JM (2005) Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol Biochem 37:2195–2204CrossRefGoogle Scholar
  60. Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174CrossRefGoogle Scholar
  61. Naeem S, Li SB (1998) Consumer species richness and autotrophic biomass. Ecology 79:2603–2615CrossRefGoogle Scholar
  62. Naeem S, Hahn DR, Schuurman G (2000) Producer-decomposer co-dependency influences biodiversity effects. Nature 403:762–764CrossRefGoogle Scholar
  63. Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915–917CrossRefGoogle Scholar
  64. Nowinski NS, Trumbore SE, Jimenez G, Fenn ME (2009) Alteration of belowground carbon dynamics by nitrogen addition in southern California mixed conifer forests. J Geophys Res Biogeosci 114:15CrossRefGoogle Scholar
  65. Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406:978–981CrossRefGoogle Scholar
  66. Parton WJ, Mosier AR, Schimel DS (1988) Dynamics of C, N, P, and S in grassland soils: a model. Biogeochemistry 5:109–131CrossRefGoogle Scholar
  67. Philippot L (2002) Denitrifying genes in bacterial and Archaeal genomes. Biochim Biophys Acta-Gene Struct Expr 1577:355–376CrossRefGoogle Scholar
  68. Portner HO, Bennett AF, Bozinovic F, Clarke A, Lardies MA, Lucassen M, Pelster B, Schiemer F, Stillman JH (2006) Trade-offs in thermal adaptation: the need for a molecular to ecological integration. Physiol Biochem Zool 79:295–313CrossRefGoogle Scholar
  69. Randerson JT, Hoffman FM, Thornton PE, Mahowald NM, Lindsay K, Lee YH, Nevison CD, Doney SC, Bonan G, Stockli R, Covey C, Running SW, Fung IY (2009) Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Glob Change Biol 15:2462–2484CrossRefGoogle Scholar
  70. Rice CW, Garcia FO, Hampton CO, Owensby CE (1994) Soil microbial response in tallgrass prairie to elevated CO2. Plant Soil 165:67–75CrossRefGoogle Scholar
  71. Rillig MC, Hernandez GY, Newton PCD (2000) Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2 spring in New Zealand supports the resource balance model. Ecol Lett 3:475–478CrossRefGoogle Scholar
  72. Rillig MC, Wright SF, Shaw MR, Field CB (2002) Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos 97:52–58CrossRefGoogle Scholar
  73. Rousk J, Demoling LA, Bahr A, Baath E (2008) Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol Ecol 63:350–358CrossRefGoogle Scholar
  74. Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596CrossRefGoogle Scholar
  75. Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J, Gcte N (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562CrossRefGoogle Scholar
  76. Schimel JP (1995) Ecosystem consequences of microbial diversity and community structure. In: Chapin FS, Korner C (eds) Arctic and alpine biodiversity: patterns, causes, and ecosystem consequences. Springer-Verlag, Berlin, pp 239–254CrossRefGoogle Scholar
  77. Schimel JP, Gulledge J (1998) Microbial community structure and global trace gases. Glob Change Biol 4:745–758CrossRefGoogle Scholar
  78. Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563CrossRefGoogle Scholar
  79. Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob Biogeochem Cycles 8:279–293CrossRefGoogle Scholar
  80. Schimel DS, Emanuel W, Rizzo B, Smith T, Woodward FI, Fisher H, Kittel TGF, McKeown R, Painter T, Rosenbloom N, Ojima DS, Parton WJ, Kicklighter DW, McGuire AD, Melillo JM, Pan Y, Haxeltine A, Prentice C, Sitch S, Hibbard K, Nemani R, Pierce L, Running S, Borchers J, Chaney J, Neilson R, Braswell BH (1997) Continental scale variability in ecosystem processes: models, data, and the role of disturbance. Ecol Monogr 67:251–271CrossRefGoogle Scholar
  81. Schimel JP, Gulledge JM, Clein-Curley JS, Lindstrom JE, Braddock JF (1999) Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biol Biochem 31:831–838CrossRefGoogle Scholar
  82. Schimel JP, Bennett J, Fierer N (2004) Microbial community composition and soil N cycling: Is there really a connection? 2003 Annual symposium: soil biodiversity and function. British Ecological Society, LancasterGoogle Scholar
  83. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394CrossRefGoogle Scholar
  84. Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San DiegoGoogle Scholar
  85. Setala H, McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139:98–107CrossRefGoogle Scholar
  86. Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989) Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 338:499–500CrossRefGoogle Scholar
  87. Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, Komarov AS, Li C, Molina JAE, Mueller T, Parton WJ, Thornley JHM, Whitmore AP (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225CrossRefGoogle Scholar
  88. Soderstrom B, Baath E, Lundgren B (1983) Decrease in soil microbial activity and biomasses owing to nitrogen amendments. Can J Microbiol 29:1500–1506CrossRefGoogle Scholar
  89. Sorensen LH (1974) Rate of decomposition of organic matter in soil as influenced by repeated drying-rewetting and repeated additions of organic material. Soil Biol Biochem 6:287–292CrossRefGoogle Scholar
  90. Steinweg JM, Plante AF, Conant RT, Paul EA, Tanaka DL (2008) Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biol Biochem 40:2722–2728CrossRefGoogle Scholar
  91. Strengbom J, Nordin A, Näsholm T, Ericson L (2002) Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. J Ecol 90:61–67CrossRefGoogle Scholar
  92. Strickland MS, Rousk J (2010) Considering fungal:bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395CrossRefGoogle Scholar
  93. Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of microbial community composition. Ecology 90:441–451CrossRefGoogle Scholar
  94. Todd-Brown KEO, Hopkins FM, Kivlin SN, Talbot JM, Allison SD (2011) A framework for representing microbial decomposition in coupled climate models. Biogeochemistry. doi: 10.1007/s10533-011-9635-6
  95. Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120CrossRefGoogle Scholar
  96. Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA 94:8284–8291CrossRefGoogle Scholar
  97. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  98. Violi HA, Treseder KK, Menge JA, Wright SF, Lovatt CJ (2007) Density dependence and interspecific interactions between arbuscular mycorrhizal fungi mediated plant growth, glomalin production and sporulation. Can J Bot 85:63–75CrossRefGoogle Scholar
  99. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750Google Scholar
  100. Vourlitis GL, Pasquini SC, Mustard R (2009) Effects of dry-season N input on the productivity and N storage of mediterranean-type shrublands. Ecosystems 12:473–488CrossRefGoogle Scholar
  101. Wagner D, Liebner S (2009) Global warming and carbon dynamics in permafrost soils: methane production and oxidation. In: Margesin R (ed) Permafrost soils. Springer, Berlin, pp 219–236CrossRefGoogle Scholar
  102. Waldrop MP, Harden JW (2008) Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Glob Change Biol 14:2591–2602Google Scholar
  103. Waldrop MP, Zak DR, Sinsabaugh RL (2004) Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem 36:1443–1451CrossRefGoogle Scholar
  104. Wallenstein M, Hall EK (2011) A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry. doi: 10.1007/s10533-011-9641-8
  105. Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Le Roux X (2007) Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol 9:2211–2219CrossRefGoogle Scholar
  106. Williams MA (2007) Response of microbial communities to water stress in irrigated and drought-prone tallgrass prairie soils. Soil Biol Biochem 39:2750–2757CrossRefGoogle Scholar
  107. Wohl DL, Arora S, Gladstone JR (2004) Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology 85:1534–1540CrossRefGoogle Scholar
  108. Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586CrossRefGoogle Scholar
  109. Xiang SR, Doyle A, Holden PA, Schimel JP (2008) Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–2289CrossRefGoogle Scholar
  110. Yavitt JB, Yashiro E, Cadillo-Quiroz H, Zinder SH (2011) Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region, North America. Biogeochemistry. doi: 10.1007/s10533-011-9644-5
  111. Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361–4365CrossRefGoogle Scholar
  112. Zhang CF, Meng FR, Bhatti JS, Trofymow JA, Arp PA (2008) Modeling forest leaf-litter decomposition and N mineralization in litterbags, placed across Canada: a 5-model comparison. Ecol Model 219:342–360CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kathleen K. Treseder
    • 1
    Email author
  • Teri C. Balser
    • 2
  • Mark A. Bradford
    • 3
  • Eoin L. Brodie
    • 4
  • Eric A. Dubinsky
    • 4
  • Valerie T. Eviner
    • 5
  • Kirsten S. Hofmockel
    • 6
  • Jay T. Lennon
    • 7
  • Uri Y. Levine
    • 8
  • Barbara J. MacGregor
    • 9
  • Jennifer Pett-Ridge
    • 10
  • Mark P. Waldrop
    • 11
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA
  2. 2.Department of Soil ScienceUniversity of Wisconsin—MadisonMadisonUSA
  3. 3.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  4. 4.Center for Environmental BiotechnologyLawrence Berkeley National LaboratoryBerkeleyUSA
  5. 5.Department of Plant SciencesUniversity of California DavisDavisUSA
  6. 6.Department of Ecology, Evolution, & Organismal BiologyIowa State UniversityAmesUSA
  7. 7.W. K. Kellogg Biological Station and the Department of Microbiology & Molecular GeneticsMichigan State UniversityHickory CornersUSA
  8. 8.Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingUSA
  9. 9.Department of Marine SciencesUniversity of North CarolinaChapel HillUSA
  10. 10.NanoSIMS Group, Chemical Sciences DivisionLawrence Livermore National LabLivermoreUSA
  11. 11.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations