Advertisement

Biogeochemistry

, Volume 108, Issue 1–3, pp 199–218 | Cite as

Afforestation does not necessarily reduce nitrous oxide emissions from managed boreal peat soils

  • Marja Maljanen
  • Narasinha Shurpali
  • Jyrki Hytönen
  • Päivi Mäkiranta
  • Lasse Aro
  • Hannamaria Potila
  • Jukka Laine
  • Changsheng Li
  • Pertti J. Martikainen
Article

Abstract

Pristine peatlands have generally low nitrous oxide (N2O) emissions but drainage and management practices enhance the microbial processes and associated N2O emissions. It is assumed that leaving peat soils from intensive management, such as agriculture, will decrease their N2O emissions. In this paper we report how the annual N2O emission rates will change when agricultural peat soil is either left abandoned or afforested and also N2O emissions from afforested peat extraction sites. In addition, we evaluated a biogeochemical model (DNDC) with a view to explaining GHG emissions from peat soils under different land uses. The abandoned agricultural peat soils had lower mean annual N2O emissions (5.5 ± 5.4 kg N ha−1) than the peat soils in active agricultural use in Finland. Surprisingly, N2O emissions from afforested organic agricultural soils (12.8 ± 9.4 kg N ha−1) were similar to those from organic agricultural soils in active use. These emissions were much higher than those from the forests on nutrient rich peat soils. Abandoned and afforested peat extraction sites emitted more N2O, (2.4 ± 2.1 kg N ha−1), than the areas under active peat extraction (0.7 ± 0.5 kg N ha−1). Emissions outside the growing season contributed significantly, 40% on an average, to the annual emissions. The DNDC model overestimated N2O emission rates during the growing season and indicated no emissions during winter. The differences in the N2O emission rates were not associated with the age of the land use change, vegetation characteristics, peat depth or peat bulk density. The highest N2O emissions occurred when the soil C:N ratio was below 20 with a significant variability within the measured C:N range (13–27). Low soil pH, high nitrate availability and water table depth (50–70 cm) were also associated with high N2O emissions. Mineral soil has been added to most of the soils studied here to improve the fertility and this may have an impact on the N2O emissions. We infer from the multi-site dataset presented in this paper that afforestation is not necessarily an efficient way to reduce N2O emissions from drained boreal organic fields.

Keywords

Agriculture Forestry N2Peatland Water table Carbon Nitrogen Nitrate pH Winter 

Notes

Acknowledgments

Special thanks for assistance in field work are due to Seppo Vihanta, Mika Yli-Petäys, Mikulás Cernota, Patrick Faubert, Reetta Kolppanen and also to numerous other people who have helped in the field and in the laboratory. The study was part of the research program “Greenhouse Impacts of the Use of Peat and Peatlands in Finland” and it was funded by the Ministry of Agriculture and Forestry and the Academy of Finland, FiDiPro Programme 127456. The two anonymous reviewers are acknowledged for valuable comments.

References

  1. Alm J, Saarnio S, Nykänen H, Silvola J, Martikainen PJ (1999) Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 44:163–186Google Scholar
  2. Alm J, Shurpali NJ, Minkkinen K, Aro L, Hytönen J, Laurila T, Lohila A, Maljanen M, Mäkiranta P, Penttilä T, Saarnio S, Silvan N, Tuittila E-S, Laine J (2007) Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Environ Res 12:191–209Google Scholar
  3. Aro L (2008) Cut-away peatlands in forestry. In: Korhonen R, Korpela L, Sarkkola S (eds) Finland—Fenland. Research and sustainable utilisation of mires and peat. Finnish Peatland Society and Maahenki Ltd, Helsinki, pp 207–211Google Scholar
  4. Chapuis-Lardy L, Wrage N, Metay A, Chottes J-L (2007) Soils, a sink for N2O? A review. Glob Chang Biol 13:1–17CrossRefGoogle Scholar
  5. Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Roggers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane nitrogen oxides and halomethanes. American Society for Microbiology, Washington, pp 219–235Google Scholar
  6. Drebs A, Norlund A, Karlsson P, Helminen J, Rissanen P (2002) Climatological statistics in Finland 1971–2000, No. 2002:1, Finnish Meteorological Institute, Edita Prima Oy, HelsinkiGoogle Scholar
  7. Ernfors M, von Arnold K, Stendahl J, Olsson M, Klemedtsson L (2007) Nitrous oxide emissions from drained organic forest soils—an up-scaling based on C:N ratios. Biogeochemistry 84:219–231CrossRefGoogle Scholar
  8. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159. doi: 10.1136/jcp.13.2.156 CrossRefGoogle Scholar
  9. Frasier R, Ullah S, Moore TR (2010) Nitrous oxide consumption potentials of well-drained forest soils in Southern Québec, Canada. Geomicrobiol J 27:53–60CrossRefGoogle Scholar
  10. Gandahl R (1957) Bestämning av tjälgräns i mark med enkel typ av tjälgränsmätare. Grundförbättring 10:7–19 (in Swedish)Google Scholar
  11. Goldberg SD, Borken W, Gebauer G (2010) N2O emission in a Norway spruce forest due to soil frost: concentration and isotope profiles shed a new light on an old story. Biogeochemistry 97:21–30. doi: 10.1007/s10533-009-9294-z CrossRefGoogle Scholar
  12. Groffmann P, Brumme R, Butterbach-Bahl K, Dobbie KE, Mosier AR, Ojima D, Papen H, Parton WJ, Smith KA, Wagner-Riddle C (2000) Evaluating nitrous oxide fluxes at the ecosystem scale. Glob Biogeochem Cycles 14:1061–1070CrossRefGoogle Scholar
  13. Halonen O, Tulkki H, Derome J (1983) Nutrient analysis methods. Metsäntutkimuslaitoksen tiedonantoja 121:1–28Google Scholar
  14. Huttunen JT, Nykänen H, Martikainen PJ, Nieminen M (2003) Fluxes of nitrous oxide and methane from drained peatlands following forest clear-felling in southern Finland. Plant Soil 255:457–462CrossRefGoogle Scholar
  15. Hytönen J (1999) Pellonmetsityksen onnistuminen Keski-Pohjanmaalla. Metsätieteen aikakauskirja 4(1999):697–710 (in Finnish)Google Scholar
  16. Hytönen J (2008) Afforestation of peatland fields. In: Korhonen R, Korpela L, Sarkkola S (eds) Finland—Fenland. Research and sustainable utilisation of mires and peat. Finnish Peatland Society and Maahenki Ltd, Helsinki, pp 212–216Google Scholar
  17. Hytönen J, Moilanen M, Silfverberg K (2008) Long term effects of mineral soil addition on the nutrient amounts of peat and on the nutrient status of Scots pine on drained mires. Suo 59:9–26Google Scholar
  18. Hyvönen NP, Huttunen JT, Shurpali NJ, Tavi NM, Repo ME, Martikainen PJ (2009) Fluxes of nitrous oxide and methane on an abandoned peat extraction site: effect of reed canary grass cultivation. Bioresour Technol 100:4723–4730. doi: 10.1016/j.biortech.2009.04.043,2009 CrossRefGoogle Scholar
  19. Kasimir Klemedtsson Å, Klemedtsson L, Berglund K, Martikainen PJ, Silvola J, Oenema O (1997) Greenhouse gas emissions from farmed organic soils: a review. Soil Use Manag 13:245–250CrossRefGoogle Scholar
  20. Kasimir Klemedtsson Å, Weslien P, Klemedtsson L (2009) Methane and nitrous oxide fluxes from a farmed Swedish Histosol. Eur J Soil Sci 60:321–331. doi: 10.1111/j.1365-2389.2009.01124.x CrossRefGoogle Scholar
  21. Kitzler B, Zechmeister-Boltenstern S, Holtermann C, Skiba U, Butterbach-Bahl K (2006) Nitrogen oxides emission from two beech forests subjected to different nitrogen loads. Biogeosciences 3:293–310CrossRefGoogle Scholar
  22. Klemedtsson L, von Arnold K, Weslien P, Gundersen P (2005) Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Glob Chang Biol 11:1142–1147CrossRefGoogle Scholar
  23. Koponen HT, Flöjt L, Martikainen PJ (2004) Nitrous oxide emissions from agricultural soils at low temperatures: a laboratory microcosm study. Soil Biol Biochem 36:757–766CrossRefGoogle Scholar
  24. Kroeze C, Mosier A, Bouwman L (1999) Closing the global N2O budget: a retrospective analysis 1500–1994. Glob Biogeochem Cycles 13:1–8CrossRefGoogle Scholar
  25. Lapveteläinen T, Regina K, Perälä P (2007) Peat based emissions in Finland’s national greenhouse gas inventory. Boreal Environ Res 12:225–236Google Scholar
  26. Li C, Cui J, Sun G, Trettin C (2004) Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems. Environ Manag 3(s1):S176–S186. doi: 10.1007/s00267-003-9128-z Google Scholar
  27. Li C, Farahbakhshazad N, Jaynes DB, Dinnes DL, Salas W, McLaughlan D (2006) Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecol Model 196:116–130CrossRefGoogle Scholar
  28. Maljanen M, Hytönen J, Martikainen PJ (2001) Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils. Plant Soil 231:113–121CrossRefGoogle Scholar
  29. Maljanen M, Liikanen A, Silvola J, Martikainen PJ (2003a) Nitrous oxide emissions from boreal organic soil under different land-use. Soil Biol Biochem 35:689–700CrossRefGoogle Scholar
  30. Maljanen M, Liikanen A, Silvola J, Martikainen PJ (2003b) Measuring N2O emissions from organic soils with closed chamber or soil/snow N2O gradient methods. Eur J Soil Sci 54:625–631CrossRefGoogle Scholar
  31. Maljanen M, Komulainen V-M, Hytönen J, Martikainen PJ, Laine J (2004) Carbon dioxide, nitrous oxide and methane dynamics in boreal organic agricultural soils with different soil management. Soil Biol Biochem 36:1801–1808CrossRefGoogle Scholar
  32. Maljanen M, Nykänen H, Moilanen M, Martikainen PJ (2006) Greenhouse gas fluxes of coniferous forest floors affected by wood ash fertilization. For Ecol Manag 237:143–149CrossRefGoogle Scholar
  33. Maljanen M, Virkajärvi P, Hytönen J, Öquist M, Sparrman T, Martikainen PJ (2009) Nitrous oxide production in boreal soils with variable organic matter content at low temperature—snow manipulation experiment. Biogeosciences 6:2461–2473CrossRefGoogle Scholar
  34. Martikainen PJ, Nykänen H, Crill P, Silvola J (1993) Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366:51–53CrossRefGoogle Scholar
  35. Myllys M (1996) Agriculture on peatlands. In: Vasander H (ed) Peatlands in Finland. Finnish Peatland Society, Helsinki, pp 64–71Google Scholar
  36. Myllys M, Sinkkonen M (2004) Viljeltyjen turve- ja multamaiden pinta-ala ja alueellinen jakauma Suomessa. Summary: The area and distribution of cultivated peat soils in Finland. Suo 55:53–60Google Scholar
  37. Nishina K, Takenaka C, Ishizuka S (2009) Spatiotemporal variation in N2O flux within a slope in a Japanese cedar (Cryptomeria japonica) forest. Biogeochemistry 96:163–175. doi: 10.1007/s10533-009-9356-2 CrossRefGoogle Scholar
  38. Nykänen H, Alm J, Lång K, Silvola J, Martikainen PJ (1995) Emissions of CH4 N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–357CrossRefGoogle Scholar
  39. Nykänen H, Silvola J, Alm J, Martikainen PJ (1996) Fluxes of greenhouse gases CH4, CO2 and N2O on some peat mining areas in Finland. In: Laiho R, Laine J, Vasander H (eds) Northern peatlands in global change. The Academy of Finland, Oy Edita Ab, Helsinki, pp 141–147Google Scholar
  40. Ojanen P, Minkkinen K, Alm J, Penttilä T (2010) Soil-atmospheric CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands. For Ecol Manag 260:411–421CrossRefGoogle Scholar
  41. Regina K, Nykänen H, Silvola J, Martikainen PJ (1996) Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry 35:401–418CrossRefGoogle Scholar
  42. Regina K, Syväsalo E, Hannukkala A, Esala M (2004) Fluxes of N2O from farmed peat soils in Finland. Eur J Soil Sci 55:591–599CrossRefGoogle Scholar
  43. Richardson D, Felgate H, Watmough N, Thomson A, Baggs E (2009) Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle—could enzymic regulation hold the key? Trends Biotechnol 27:388–397CrossRefGoogle Scholar
  44. Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen A, Chisthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Foos F, Jouel J, Kattsov V, Lohmann U, Maysuno T, Molina M, Nicholls N, Overpack J, Raga G, Ramaswamy V, Ren, J, Rusticucci M, Sommerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Hiller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  45. Sommerfeld RA, Mosier AR, Musselman RC (1993) CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature 361:140–142CrossRefGoogle Scholar
  46. Törmälä T (1982) Structure and dynamics of reserved field ecosystem in central Finland. Biological Research Reports from the University of Jyväskylä, vol 8Google Scholar
  47. Turunen J (2008) Development of Finnish peatland area and carbon storage 1950–2000. Boreal Environ Res 13:319–334Google Scholar
  48. Turveteollisuusliitto (2009) http://www.turveteollisuusliitto.fi. Accessed 30 Nov, 2009
  49. von Arnold K, Weslien P, Nilsson M, Svensson BH, Klemedtsson L (2005a) Fluxes of CO2, CH4 and N2O from drained coniferous forests on organic soils. For Ecol Manag 210:239–254CrossRefGoogle Scholar
  50. von Arnold K, Nilsson M, Hånell B, Weslien P, Klemedtsson L (2005b) Fluxes of CO2, CH4 and N2O from deciduous forests on organic soils. Soil Biol Biochem 37:1059–1071CrossRefGoogle Scholar
  51. Wall A, Hytönen J (1996) Painomaan vaikutus metsitetyn turvepellon ravinnemääriin. Summary: Effect of mineral soil admixture on the nutrient amounts of afforested peatland fields. Suo 47:78–83Google Scholar
  52. Weslien P, Kasimir Klemedtsson Å, Börjesson G, Klemedtsson L (2009) Strong pH influence on N2O and CH4 fluxes from forested organic soils. Eur J Soil Sci 60:311–320CrossRefGoogle Scholar
  53. Yli-Petäys M, Laine J, Vasander H, Tuittila E-S (2007) Carbon gas exchange of a re-vegetated cut-away peatland five decades after abandonment. Boreal Environ Res 12:177–190Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marja Maljanen
    • 1
  • Narasinha Shurpali
    • 1
  • Jyrki Hytönen
    • 2
  • Päivi Mäkiranta
    • 2
  • Lasse Aro
    • 3
  • Hannamaria Potila
    • 3
  • Jukka Laine
    • 3
  • Changsheng Li
    • 4
  • Pertti J. Martikainen
    • 1
  1. 1.Department of Environmental Science, Faculty of Science and ForestryUniversity of Eastern FinlandKuopioFinland
  2. 2.Finnish Forest Research InstituteKannusFinland
  3. 3.Finnish Forest Research InstituteParkanoFinland
  4. 4.Institute for the Study of Earth, Oceans, and Space, Complex Systems Research CenterUniversity of New HampshireDurhamUSA

Personalised recommendations