, Volume 108, Issue 1–3, pp 135–148 | Cite as

Elevated air carbon dioxide concentrations increase dissolved carbon leaching from a cropland soil

  • Jan Siemens
  • Andreas Pacholski
  • Katia Heiduk
  • Anette Giesemann
  • Ulrike Schulte
  • René Dechow
  • Martin Kaupenjohann
  • Hans-Joachim Weigel


Increasing leaching losses of carbon from soils due to accelerated weathering and increasing concentrations of dissolved carbon as a result of intensified soil respiration are suspected to provide a negative feedback on rising atmospheric CO2 concentrations. We tested this hypothesis by studying concentrations of dissolved carbon and groundwater recharge at the Braunschweig free air carbon dioxide enrichment (FACE) experiment under winter wheat and winter barley. Dissolved carbon concentrations under elevated atmospheric CO2 and ambient conditions were rather similar and not consistently higher under FACE. An analysis of δ13C signatures suggested that dissolved organic and inorganic carbon contained 9–29% (DOC) and 26–49% (DIC) of “new” carbon originating from CO2 added to the FACE rings. Dissolved inorganic carbon additionally contained 15–42% of carbonate-derived C. A 15% reduction in evapotranspiration under elevated CO2 increased groundwater recharge by 60 mm or 55%, which was the main driver for an observed 81% increase in dissolved carbon leaching from 2.7 to 4.9 g C m−2 year−1 at 90 cm depth. Our results suggest that future changes of dissolved carbon leaching losses will be mainly governed by changes in climate and groundwater recharge and to a lesser extent by increasing dissolved carbon concentrations.


Free air carbon dioxide enrichment Dissolved organic carbon Dissolved inorganic carbon Net biome productivity Net ecosystem carbon balance Carbon sequestration 



This project was partly funded by the German Research Foundation (Grant SI 1106/2-1). The FACE experiment was financed by the German Ministry of Food, Agriculture and Consumer Protection (BMELV). Support of the Brookhaven National Laboratory Upton, NY, USA and the staff of the Institute of Biodiversity of the Johann Heinrich von Thünen-Institute is gratefully acknowledged. We thank Franz Josef Löpmeier and Harald Braden of the German Meteorological Service for providing weather data, soil water contents, and drainage volumes of lysimeters at the Braunschweig site, as well as the Institute of Soil Science, University of Hohenheim and Christine Ehrlicher for determination of soil carbon contents, and Beate Gehnen for measuring the δ13C values of DIC. We acknowledge the suggestions of two anonymous reviewers that helped to improve the manuscript.


  1. Amiotte-Suchet P, Aubert D, Probst JL, Gauthier-Lafaye F, Probst A, Andreux F, Viville D (1999) δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study (Vosges mountains, France). Chem Geol 159:129–145CrossRefGoogle Scholar
  2. Andrews JA, Schlesinger WH (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Glob Biogeochem Cycles 15(1):149–162CrossRefGoogle Scholar
  3. Aumont O, Orr JC, Monfray P, Ludwig W, Amiotte-Suchet P, Probst J-L (2001) Riverine-driven interhemispheric transport of carbon. Glob Biogeochem Cycles 15(2):393–405CrossRefGoogle Scholar
  4. Bader MKF, Körner C (2010) No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Glob Change Biol 16:2830–2843CrossRefGoogle Scholar
  5. Bernhardt ES, Barber JJ, Pippen JS, Taneva L, Andrews JA, Schlesinger WH (2006) Long-term effects of free-air CO2 enrichment (FACE) on soil respiration. Biogeochemistry 77(1):91–116CrossRefGoogle Scholar
  6. Burkhart S, Manderscheid R, Weigel HJ (2009) Canopy CO2 exchange of sugar beet under different CO2 concentrations and nitrogen supply: results from a free-air CO2 enrichment study. Plant Biol 11:109–123CrossRefGoogle Scholar
  7. Burkhart S, Manderscheid R, Wittich K-P, Löpmeier F-J, Weigel H-J (2011) Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown in free-air CO2 enrichment. Plant Biol 13(2):258–268CrossRefGoogle Scholar
  8. Chadwick OA, Kelly EF, Merritts DM, Amundson RG (1994) Carbon dioxide consumption during soil development. Biogeochemistry 24:115–127CrossRefGoogle Scholar
  9. Filion M, Dutilleul P, Potvin C (2000) Optimum experimental design for free-air carbon dioxide enrichment (FACE) studies. Glob Change Biol 6(7):843–854CrossRefGoogle Scholar
  10. Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198CrossRefGoogle Scholar
  11. Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439(7078):835–838CrossRefGoogle Scholar
  12. Giesemann A, Weigel H-J (2008) Soil carbon isotopic composition and soil carbon content in an agroecosystem during six years of Free Air Carbon dioxide Enrichment (FACE). Isot Environ Health Stud 44(4):349–363CrossRefGoogle Scholar
  13. Hagedorn F, Blaser P, Siegwolf R (2002) Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon—clues from δ13C signature. Soil Biol Biochem 34(3):355–366CrossRefGoogle Scholar
  14. Hagedorn F, Saurer M, Blaser P (2004) A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils. Eur J Soil Sci 55(1):91–100CrossRefGoogle Scholar
  15. Hagedorn F, van Hees PAW, Handa T, Hättenschwiler S (2008) Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Glob Biogeochem Cycles 22:GB2004Google Scholar
  16. Henke J, Böttcher U, Neukam D, Sieling K, Kage H (2008) Evaluation of different agronomic strategies to reduce nitrate leaching after winter oilseed rape (Brassica napus L.) using a simulation model. Nutr Cycl Agroecosyst 82(3):299–314CrossRefGoogle Scholar
  17. Kage H, Stützel H (1999) HUME: an object oriented component library for generic modular modelling of dynamic systems. In: Donatelli CSM, Villalobos F, Villar JM (eds) Modelling cropping systems. European Society of Agronomy conference, Lleida, June 1999, pp 299–300Google Scholar
  18. Karberg NJ, Pregitzer KS, King JS, Friend AL, Wood JR (2005) Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia 142(2):296–306CrossRefGoogle Scholar
  19. Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368CrossRefGoogle Scholar
  20. Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grünwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moors E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba U, Soussana J-F, Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching is a crucial component of the net ecosystem carbon balance. Glob Change Biol 17(2):1167–1185CrossRefGoogle Scholar
  21. King JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR, Karnosky DF (2001) Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128(2):205–237Google Scholar
  22. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60(10):2859–2876CrossRefGoogle Scholar
  23. Lewin KF, Hendrey GR, Kolber Z (1992) Brookhaven National Laboratory Free-air carbon-dioxide enrichment facility. Crit Rev Plant Sci 11:135–141Google Scholar
  24. Macpherson GL, Roberts JA, Blair JM, Townsend MA, Fowle DA, Beisner KR (2008) Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA. Geochim Cosmochim Acta 72(23):5581–5599CrossRefGoogle Scholar
  25. Manderscheid R, Pacholski A, Frühauf C, Weigel HJ (2009) Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation. Field Crop Res 110(3):185–196CrossRefGoogle Scholar
  26. Monteith JL (1973) Principles of environmental physics. Edward Arnold, LondonGoogle Scholar
  27. Oh NH, Richter DD (2004) Soil acidification induced by elevated atmospheric CO2. Glob Change Biol 10:1936–1946CrossRefGoogle Scholar
  28. Oh NH, Kim HS, Richter DD (2005) What regulates soil CO2 concentrations? A modelling approach to CO2 diffusion in deep soil profiles. Environ Eng Sci 22(1):38–44CrossRefGoogle Scholar
  29. Oh NH, Hofmockel M, Lavine ML, Richter DD (2007) Did elevated atmospheric CO2 alter soil mineral weathering?: an analysis of 5-year soil water chemistry data at Duke FACE study. Glob Change Biol 13(12):2626–2641CrossRefGoogle Scholar
  30. Pagani M, Caldeira K, Berner R, Beerling DJ (2009) The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature 460:85–88CrossRefGoogle Scholar
  31. Pawellek F, Veizer J (1994) Carbon cycle in the upper Danube and its tributaries: δ13C constraints. Isr J Earth Sci 43:187–194Google Scholar
  32. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179CrossRefGoogle Scholar
  33. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269CrossRefGoogle Scholar
  34. Siemens J, Kaupenjohann M (2004) Comparison of three methods for field measurement of solute leaching in a sandy soil. Soil Sci Soc Am J 68(4):1191–1196CrossRefGoogle Scholar
  35. Søe ARB, Giesemann A, Anderson TH, Weigel HJ, Buchmann N (2004) Soil respiration under elevated CO2 and its partitioning into recently assimilated and older carbon sources. Plant Soil 262(1–2):85–94CrossRefGoogle Scholar
  36. Spiegelhalter DJ, Thomas A, Best NG, Lunn D (2003) WinBUGS User manual version 1.4. Assessed 1 Dec 2010
  37. Stockle CO, Martin SA, Campbell GS (1994) CropSyst, a cropping systems simulation model: water/nitrogen budgets and crop yield. Agric Syst 46(3):335–359CrossRefGoogle Scholar
  38. Suarez DL (1986) A soil water extractor that minimizes CO2 degassing and pH errors. Water Resour Res 22(6):876–880CrossRefGoogle Scholar
  39. Trockel A (2007) Vergleich von Wasserhaushaltsmodellierungen am Standort FAL, Studienarbeit, Institute of Geoecology, Braunschweig Technical University, Braunschweig, 69 ppGoogle Scholar
  40. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898CrossRefGoogle Scholar
  41. Weigel H-J, Pacholski A, Burkhart S, Helal M, Heinemeyer O, Kleikamp B, Manderscheid R, Frühauf C, Hendrey GF, Lewin K, Nagy J (2005) Carbon turnover in a crop rotation under free air CO2 enrichment (FACE). Pedosphere 15(6):728–738Google Scholar
  42. Weigel HJ, Manderscheid R, Burkart S, Pacholski A, Heinemeyer O (2006) Responses of an arable crop rotation system to elevated CO2. In: Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (eds) Managed ecosystems and CO2: case studies, Processes, and Perspectives. Ecological studies 187. Springer, Berlin, pp 122–137Google Scholar
  43. Wösten JHM, Van Genuchten MT (1988) Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Sci Soc Am J 52(6):1762–1770CrossRefGoogle Scholar
  44. Zenker T (2003) Verdunstungswiderstände und Gras-Referenzverdunstung, Lysimeter-untersuchungen zum Penman-Monteith-Ansatz. PhD thesis, Berlin University of Technology, Berlin, 147 ppGoogle Scholar
  45. Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim Cosmochim Acta 59(1):107–114CrossRefGoogle Scholar
  46. Zhong S, Liang W, Lou Y, Li Q, Zhu J (2009) Four years of free-air CO2 enrichment enhance soil C concentrations in a Chinese wheat field. J Environ Sci 21:1221–1224CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jan Siemens
    • 1
    • 2
  • Andreas Pacholski
    • 3
    • 4
  • Katia Heiduk
    • 3
  • Anette Giesemann
    • 3
  • Ulrike Schulte
    • 5
  • René Dechow
    • 3
  • Martin Kaupenjohann
    • 1
  • Hans-Joachim Weigel
    • 3
  1. 1.Department of Soil ScienceTechnische Universität BerlinBerlinGermany
  2. 2.Institute of Crop Science and Resource Conservation, Soil ScienceUniversity of BonnBonnGermany
  3. 3.Johann Heinrich von Thünen-InstitutFederal Research Institute for Rural Areas, Forestry and FisheriesBraunschweigGermany
  4. 4.Institute of Crop Science and Plant BreedingChristian-Albrechts-Universität zu KielKielGermany
  5. 5.Institute of Geology, Mineralogy and GeophysicsRuhr-Universität BochumBochumGermany

Personalised recommendations