, Volume 105, Issue 1–3, pp 119–131 | Cite as

The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil

  • M. T. CoeEmail author
  • E. M. Latrubesse
  • M. E. Ferreira
  • M. L. Amsler


Deforestation changes the hydrological, geomorphological, and biochemical states of streams by decreasing evapotranspiration on the land surface and increasing runoff, river discharge, erosion and sediment fluxes from the land surface. Deforestation has removed about 55% of the native vegetation and significantly altered the hydrological and morphological characteristics of an 82,632 km2 watershed of the Araguaia River in east-central Brazil. Observed discharge increased by 25% from the 1970s to the 1990s and computer simulations suggest that about 2/3 of the increase is from deforestation, the remaining 1/3 from climate variability. Changes of this scale are likely occurring throughout the 2,000,000 km2 savannah region of central Brazil.


Cerrado Discharge Deforestation Land cover change Araguaia River Geomorphology 



We gratefully acknowledge the contributions of Paul Lefebvre in developing figures, Dr. Eric A. Davidson and Wendy Kingerlee’s helpful comments, and Dr. Hewlley Acioli’s help with precipitation data. We also thank two anonymous reviewers for comments that greatly improved the manuscript. Funding was provided by the United States National Aeronautics and Space Administration, Land Cover and Land Use Change and LBA-ECO programs, CNPq-Brazil, CYTED, and VITAE Foundation.


  1. Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002CrossRefGoogle Scholar
  2. Ball JT, Woodrow IE, Berry JA (1986) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different light conditions. In: Biggins J (ed) Progress in photosynthetic research. M. Nijhoff Publishers, Dordrecht, pp 221–224Google Scholar
  3. Bonan GB, DeFries RS, Coe MT, Ojima DS (2004) Land use and climate. In: Gutman G (ed) Land change science. Kluwer Academic Publishers, Amsterdam, pp 301–314CrossRefGoogle Scholar
  4. Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23CrossRefGoogle Scholar
  5. Botta A, Foley JA (2002) Effects of climate variability and disturbances on the Amazonian terrestrial ecosystems dynamics. Global Biogeochem Cycles 16:1–11CrossRefGoogle Scholar
  6. Botta A, Ramankutty N, Foley JA (2002) Long-term variations of climate and carbon fluxes over the Amazon basin. Geophys Res Lett 29:1–4CrossRefGoogle Scholar
  7. Bruijnzeel LA (1990) Hydrology of moist tropical forests and effects of conversion: a state of knowledge review. UNESCO, ParisGoogle Scholar
  8. Bruijnzeel LA (1991) Hydrological impacts of tropical forest conversion. Nature Resour 27:36–46Google Scholar
  9. Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595CrossRefGoogle Scholar
  10. Cardille JA, Foley JA (2003) Agricultural land-use change in Brazilian Amazonia between 1980 and 1995: evidence from integrated satellite and census data. Remote Sens Environ 87:551–562CrossRefGoogle Scholar
  11. Coe MT, Costa MH, Botta A, Birkett C (2002) Long-term simulations of discharge and floods in the Amazon basin. J Geophys Res 107:1–17Google Scholar
  12. Coe MT, Costa MH, Howard EA (2007) Simulating the surface waters of the Amazon River Basin: impacts of new river geomorphic and dynamic flow parameterizations. Hydrol Process 21:2542–2553Google Scholar
  13. Coe MT, Costa MH, Soares-Filho BS (2009) The Influence of historical and potential future deforestation on the stream flow of the Amazon River—land surface processes and atmospheric feedbacks. J Hydrol 369:165–174CrossRefGoogle Scholar
  14. Costa M, Foley J (1997) Water balance of the Amazon Basin: dependence on vegetation cover and canopy conductance. J Geophys Res 102:23973–23989CrossRefGoogle Scholar
  15. Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J Hydrol 283:206–217CrossRefGoogle Scholar
  16. Dunne T, Leopold LB (1978) Water in environmental planning. W.H. Freeman and Company, New YorkGoogle Scholar
  17. Eagleson PS (1978) Climate, soil, and vegetation 1. Introduction to water balance dynamics. Water Resour Res 14:705–712CrossRefGoogle Scholar
  18. Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates and consequences. Conserv Biol 19:680–688CrossRefGoogle Scholar
  19. Ferreira LG, Asner GP, Knapp DE, Davidson EA, Coe MT, Bustamante MMC, Oliveira EL (in press) Equivalent water thickness in savanna ecosystems: MODIS estimates based on ground and EO-1 Hyperion data. Int J Remote SensGoogle Scholar
  20. Fetter CW (2001) Applied hydrogeology. Prentice Hall, New JerseyGoogle Scholar
  21. Foley JA, Botta A, Coe MT, Costa MH (2002) El Nino-Southern oscillation and the climate, ecosystems and rivers of Amazonia. Global Biogeochem Cycles 16:1–17CrossRefGoogle Scholar
  22. Franco SM (2003) O grande vale do Araguaia: transformações da bacia do Araguaia e Goiás. Instituto de Estúdios Sócio Ambientais, Universidade Federal de Goiás, Goiânia, p 382Google Scholar
  23. Garcia-Montiel DC, Coe MT, Cruz MP, Ferreira JN, da Silva EM, Davidson EA (2008) Estimating seasonal changes in volumetric soil water content at landscape scales in a Savanna ecosystem using two-dimensional resistivity profiling. Earth Interact 12:1–25CrossRefGoogle Scholar
  24. Gardner WR (1983) Soil properties and efficient water use: an overview. In: Taylor HM, Jordan WR, Sinclair TR (eds) Limitations to efficient water use in crop production. American Society of Agronomy, Madison, WI, pp 45–46Google Scholar
  25. Giambelluca TW, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Hoffmann WA, Franco AC, Buchert MP (2009) Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agric For Meteorol 149:1365–1376CrossRefGoogle Scholar
  26. Green WH, Ampt GA (1911) Studies on soil physics, 1. The flow of air and water through soils. J Agric Sci 4:1–24CrossRefGoogle Scholar
  27. Hayhoe S, Neill C, McHorney R, Porder S, Lefebvre P (2010) Amazon forest conversion to soy agriculture increases stream discharge but not stormflow. Glob Change Biol. doi: 10.1111/j.1365-2486.2011.02392.x
  28. Kaimowitz D, Mertens B, Wunder S, Pacheco P (2004) Hamburger connection fuels Amazon destruction. Center for International Forest Research, Bangor, IndonesiaGoogle Scholar
  29. Kalnay E, Kanamitsu M, Kistler R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  30. Kistler R (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorolo Assoc 82:247–267CrossRefGoogle Scholar
  31. Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713CrossRefGoogle Scholar
  32. Knox JC (1972) Alluviation in Southwestern Wisconsin. Ann Assoc Am Geogr 62:401–410CrossRefGoogle Scholar
  33. Knox JC (2006) Floodplain sedimentation in the Upper Mississippi Valley: natural versus human accelerated. Geomorphology 79:286–310CrossRefGoogle Scholar
  34. Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochem Cycles 14:795–825CrossRefGoogle Scholar
  35. Latrubesse EM (2008) Patterns of anabranching channels: the ultimate end member adjustment of mega rivers. Geomorphology 101:130–145CrossRefGoogle Scholar
  36. Latrubesse EM, Amsler M, Morais M, Aquino S (2009) The geomorphological response of a large pristine alluvial river to tremendous deforestation in the South American Tropics: the case of the Araguaia River. J Geomorphol 113:239–252CrossRefGoogle Scholar
  37. Li KY, Coe MT, Ramankutty N (2005) Investigation of hydrological variability in West Africa using land surface models. J Clim 18:3173–3188CrossRefGoogle Scholar
  38. Li KY, Coe MT, Ramankutty N, De Jong R (2007) Modeling the hydrological impact of land-use change in West Africa. J Hydrol 337:258–268CrossRefGoogle Scholar
  39. Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999a) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301CrossRefGoogle Scholar
  40. Meinzer FC, Goldstein G, Franco AC, Bustamante M, Igler E, Jackson P, Caldas L, Rundel PW (1999b) Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species. Funct Ecol 13:273–282CrossRefGoogle Scholar
  41. Meinzer FC, Brooks JR, Bucci SJ, Goldstein G, Scholz FG, Warren JM (2004) Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol 24:919–928Google Scholar
  42. Mitchell TD, Carter T, Jones P, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre working paper (p 25). Tyndall Center for Climate Change Research,Google Scholar
  43. Moreira MZ, Scholz FG, Bucci SJ, Sternberg LS, Goldstein G, Meinzer FC, Franco AC (2003) Hydraulic lift in a neotropical savanna. Funct Ecol 17:573–581CrossRefGoogle Scholar
  44. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  45. Nepstad DC, Stickler CM, Soares Filho BS, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos Trans R Soc 363:1737–1746CrossRefGoogle Scholar
  46. Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005) Deep root function in the soil water dynamics in cerrado savannas of central Brazil. Funct Ecol 19:574–581CrossRefGoogle Scholar
  47. Ramankutty N, Foley JA (1998) Characterizing patterns of global land use: an analysis of global croplands data. Global Biogeochem Cycles 12:667–685CrossRefGoogle Scholar
  48. Raymond PA, Oh NH, Turner RE, Broussard W (2008) Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451:449–452CrossRefGoogle Scholar
  49. Sano EE, Rosa R, B JL, Ferreira LG (2008) Semidetailed land use mapping in the Cerrado. Pesquisa Agropecuária Brasileira 43:153–156CrossRefGoogle Scholar
  50. Sano EE, Rosa R, Brito JLS, Ferreira LG (2009) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166:113–124Google Scholar
  51. Santos AJB, Quesada CA, da Silva GT, Maia JF, Miranda HS, Miranda AC, Lloyd JL (2004) High rates of net ecosystem carbon assimilation by Brachiara pasture in the Brazilian Cerrado. Glob Change Biol 10:877–885CrossRefGoogle Scholar
  52. Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC (2002) Hydraulic redistribution of soil water by neotropical savanna trees. Tree Physiol 22:603–612Google Scholar
  53. Scholz FG, Bucci SJ, Goldstein G, Moreira MZ, Meinzer FC, Domec J-C, Vega RV, Franco AC, Miralles-Wilhelm F (2008) Biophysical and life history determinants of hydraulic lift in Neotropical savanna trees. Funct Ecol 22:773–786Google Scholar
  54. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. T. Coe
    • 1
    Email author
  • E. M. Latrubesse
    • 2
  • M. E. Ferreira
    • 3
  • M. L. Amsler
    • 4
  1. 1.The Woods Hole Research CenterFalmouthUSA
  2. 2.Department of Geography and the EnvironmentUniversity of Texas at AustinAustinUSA
  3. 3.Instituto de Estudos Sócio-Ambientais (IESA)Universidade Federal de GoiásGoiâniaBrazil
  4. 4.Instituto Nacional de Limnología (INALI)Universidad Nacional del Litoral-CONICET-CC217Santa FeArgentina

Personalised recommendations