Biogeochemistry

, Volume 105, Issue 1–3, pp 201–211 | Cite as

Cloud streets and land–water interactions in the Amazon

  • Renato Ramos da Silva
  • Adilson W. Gandu
  • Leonardo D. A. Sá
  • Maria A. F. Silva Dias
Article

Abstract

Cloud streets are common feature in the Amazon Basin. They form from the combination of the vertical trade wind stress and moist convection. Here, satellite imagery, data collected during the COBRA-PARÁ (Caxiuanã Observations in the Biosphere, River and Atmosphere of Pará) field campaign, and high resolution modeling are used to understand the streets′ formation and behavior. The observations show that the streets have an aspect ratio of about 3.5 and they reach their maximum activity around 15:00 UTC when the wind shear is weaker, and the convective boundary layer reaches its maximum height. The simulations reveal that the cloud streets onset is caused by the local circulations and convection produced at the interfaces between forest and rivers of the Amazon. The satellite data and modeling show that the large rivers anchor the cloud streets producing a quasi-stationary horizontal pattern. The streets are associated with horizontal roll vortices parallel to the mean flow that organizes the turbulence causing advection of latent heat flux towards the upward branches. The streets have multiple warm plumes that promote a connection between the rolls. These spatial patterns allow fundamental insights on the interpretation of the Amazon exchanges between surface and atmosphere with important consequences for the climate change understanding.

Keywords

Caxiuanã COBRA-PARA Latent flux LES Roll vortices 

References

  1. Andreae MO, Artaxo P, Brandão C, Carswell FE, Ciccioli P, Costa AL, Culf AD, Esteves JL, Gash JHC, Grace J, Kabat P, Lelieveld J, Malhi Y, Manzi AO, Meixner FX, Nobre AD, Nobre C, Ruivo MLP, Silva-Dias MA, Stefani P, Valentini R, von Jouanne J, Waterloo MJ. (2002) Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: the LBA-EUSTACH experiments. J Geophys Res 107(D20):8066. doi: 10.1029/2001JD000524 Google Scholar
  2. Araujo AC, Nobre AD, Kruijt B, Culf AD, Stefani P, Elbers J, Dallarosa R, Randow C, Manzi AO, Valentini R, Gash JHC, Kabat P (2002) Dual long-term tower study of 10 carbon dioxide fluxes for a central Amazonian rainforest: the manaus LBA site. J Geophys Res 107(D20):8090. doi:10.1029/2001JD000676 CrossRefGoogle Scholar
  3. Atkins NT, Wakimoto RM, Weckwerth TM (1995) Observations of sea-breeze front during CaPE. Part II: Dual Doppler and aircraft analysis. Mon Wea Rev 123:944–969CrossRefGoogle Scholar
  4. Baidya Roy S (2009) Mesoscale vegetation-atmosphere feedbacks in Amazonia. J Geophys Res 114:D20111. doi:10.1029/2009JD12001 CrossRefGoogle Scholar
  5. Baidya Roy S, Avissar R (2002) Impact of land use/land cover change on regional hydrometeorology in Amazonia. J Geophys Res 107:8037. doi:10.1029/2000JD000266 CrossRefGoogle Scholar
  6. Brown RA (1970) A secondary flow model for planetary boundary layer. J Atmos Sci 27:742–757CrossRefGoogle Scholar
  7. Brummer B (1999) Roll and cell convection in wintertime Arctic cold-air outbreaks. J Atmos Sci 56:2613–2636CrossRefGoogle Scholar
  8. Carswell FE, Costa AL, Palheta M, Malhi Y, Meir PW, Costa JPR, Ruivo ML, Leal LSM, Costa JM N, Clement RJ, Grace J (2002) Seasonality in CO2 and H2O flux at an eastern Amazonian rainforest. J Geophys Res 107(D20):8076. doi:10.1029/2000JD000284 CrossRefGoogle Scholar
  9. Chlond A (1992) Three-dimensional simulation of street cloud development during a cold air outbreak. Bound.-Layer Meteor 58:161–200CrossRefGoogle Scholar
  10. Cotton WR, Pielke RA Sr, Walko RL, Liston GE, Tremback CJ, Jiang H, Mcanelly RL, Harrington JY, Nicholls ME, Carrio GG, Mcfadden LP (2003) RAMS current status and future directions. Meteorol Atmos Phys 82:5–29CrossRefGoogle Scholar
  11. Dailey PS, Fovel RG (1999) Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: offshore ambient flow. Mon Wea Rev 127:858–878CrossRefGoogle Scholar
  12. Davidson E, Artaxo P (2004) Globally significant changes in biological processes of the Amazon Basin: results of the large-scale biosphere-atmosphere experiment. Global Change Biol 10:1–11CrossRefGoogle Scholar
  13. Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a 3-dimensional model. Bound.-Layer Meteor 18:495–527CrossRefGoogle Scholar
  14. Etling D, Brown RA (1993) Roll vortices in the planetary boundary layer: a review. Bound.-Layer Meteorol 65:215–248CrossRefGoogle Scholar
  15. Gandu AW, Cohen JCP, Souza JRS (2004) Simulation of deforestation in eastern Amazonia using a high-resolution model. Theor Appl Climatol 78:123–135CrossRefGoogle Scholar
  16. Glendening JW (2000) Budgets of lineal and nonlineal turbulent kinetic energy under strong shear conditions. J Atmos Sci 57:2297–2318CrossRefGoogle Scholar
  17. Grace JJ, Lloyd J, McIntyre AC, Miranda P, Meier HS, Nobre C, Moncrieff J, Massheder J, Malhi Y, Wright IR, Gash JH (1995) Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992 to 1993. Science 270:778–780CrossRefGoogle Scholar
  18. Harrington JY (1997) The effects of radiative and microphysical processes on simulated warm and transition season arctic stratus. Dissertation, Colorado State UniversityGoogle Scholar
  19. Kristovich DAR, Laird NF, Hjelmfelt MR, Derickson RG, Cooper KA (1999) Transitions in boundary layer meso-γ convective structures: an observational case study. Mon Wea Rev 127:2895–2909CrossRefGoogle Scholar
  20. Laurent H, Machado LAT, Morales CA, Durieux L (2002) Characteristics of the Amazonian mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment. J Geophys Res 107(D20):8054. doi:10.1029/2001JD000337 CrossRefGoogle Scholar
  21. Le Mone (1976) Modulation of turbulence energy by longitudinal rolls in an unstable planetary boundary layer. J Atmos Sci 33:1308–1320CrossRefGoogle Scholar
  22. Le Mone MA, Pennell WT (1976) The relationship of trade wind cumulus distribution to sub-cloud layer fluxes and structure. Mon Wea Rev 104:524–539CrossRefGoogle Scholar
  23. Liu AQ, Moore GWK, Tsuboki K (2004) A high-resolution simulation of convective roll clouds during a cold-air outbreak. Geophys Res Lett 31. doi:10.1029/2003GL018530
  24. Louis JF (1979) Parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor 17:187–202CrossRefGoogle Scholar
  25. Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806CrossRefGoogle Scholar
  26. Ometto JP, Nobre AD, Rocha HR, Artaxo P, Martinelli L (2005) Amazônia and the modern carbon cycle: lessons learned. Oecologia. doi:10.1007/s00442-005-0034-3
  27. Ramos da Silva R, Avissar R (2006) The hydrometeorology of a deforested region of the Amazon. J Hydrometeor 7:1028–1042CrossRefGoogle Scholar
  28. Ramos da Silva R, Werth D, Avissar R (2008) Regional impacts of future land-cover changes on the Amazon Basin wet-season climate. J Clim 21(6):1153–1170CrossRefGoogle Scholar
  29. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416(6881):617–620CrossRefGoogle Scholar
  30. Silva Dias M et al (2002) A case study of convective organization into precipitating lines in the Southwest Amazon during the WETAMC and TRMM-LBA. J Geophys Res 107:8078. doi:10.129/2001JD000375 CrossRefGoogle Scholar
  31. Silva Dias M, Silva Dias PL, Longo M, Fitzjarrald D, Denning AS (2004) River breeze circulation in eastern Amazonia: observations and modeling results. Theor Appl Climatol 78:111–121CrossRefGoogle Scholar
  32. Walko RL, Cotton WR, Meyers MP, Harrington JY (1995) New RAMS cloud microphysics parameterization. 1. The single-moment scheme. Atmos Res 38:29–62CrossRefGoogle Scholar
  33. Walko RL et al (2000a) Coupled atmosphere–biophysics–hydrology models for environmental modeling. J Appl Meteor 39:931–944CrossRefGoogle Scholar
  34. Walko RL, Cotton WR, Feingold G, Stevens B (2000b) Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model. Atmos Res 53:171–183CrossRefGoogle Scholar
  35. Weckwerth TM, Wilson JW, Wakimoto R, Crook NA (1997) Horizontal convective rolls: determining the environmental conditions supporting their existence and characteristics. Mon Wea Rev 125:505–526CrossRefGoogle Scholar
  36. Weckwerth TM, Horst TW, Wilson JW (1999) An observational study of the evolution of convective rolls. Mon Wea Rev 127:2160–2179CrossRefGoogle Scholar
  37. Young GS, Kristovich DAR, Hjelmfelt MR, Foster RC (2002) Rolls, streets, waves and more. Bull Amer Meteor Soc 83:997–1001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Renato Ramos da Silva
    • 1
    • 2
  • Adilson W. Gandu
    • 3
  • Leonardo D. A. Sá
    • 4
  • Maria A. F. Silva Dias
    • 3
  1. 1.Departamento de Física (CFM) Universidade Federal de Santa Catarina – UFSCFlorianopolisBrazil
  2. 2.Universidade Federal do Pará – PPGCABelémBrazil
  3. 3.Depto de Ciências AtmosféricasUniversidade de São Paulo (USP)São PauloBrazil
  4. 4.Centro Regional da AmazôniaInstituto Nacional de Pesquisas Espaciais (INPE)BelémBrazil

Personalised recommendations