, Volume 107, Issue 1–3, pp 471–488 | Cite as

Impacts of forest biomass removal on soil nutrient status under climate change: a catchment-based modelling study for Finland

  • Julian Aherne
  • Maximilian Posch
  • Martin Forsius
  • Aleksi Lehtonen
  • Kari Härkönen


The environmental impact of different forest harvesting scenarios on soil nutrient status and water chemistry under current and future (IPCC A2) climate was evaluated for a random sample of lake catchments (n = 1066) covering Finland. Biomass removal scenarios were derived from a management-oriented large-scale forest model based on data from national forest inventories. Forest ecosystem sustainability was assessed by evaluating soil base cation balances as well as temporal changes (2010–2050) in soil base saturation and lake water acid neutralising capacity, using a dynamic hydro-geochemical model. The harvesting scenarios had very different effects on biomass and element removal as well as soil and water quality; only harvesting of above-ground woody biomass (stem-only or stem-and-branches harvesting scenarios) was predicted to be sustainable, i.e. not depleting the soil base cation pools in the long term. The most intensive scenario—whole-tree harvesting (including the removal of stumps and roots)—doubled the removal of biomass, tripled the removal of base cations from the catchment soils, and increased nitrogen removal fourfold. Climate change was predicted to have a positive impact by increasing the future supply of base cations from weathering, thus compensating their removal by biomass harvesting. However, additional inputs of nitrogen and potassium will be required to ensure sustained forest growth under intensive biomass harvesting.


Forest harvesting Residue removal Biofuel IPCC A2 climate MAGIC Base saturation Lake ANC Nutrient limitation 



This research was undertaken, in part, thanks to funding from the Canada Research Chairs Program and an NSERC Discovery grant. The preparation of this paper has been partially supported by the European Commission’s LIFE III programme within the framework of the European Consortium for Modelling Air Pollution and Climate Strategies (EC4MACS; and the LIFE + VACCIA project ( S. Fronzek and N. Veijalainen (Finnish Environment Institute) are acknowledged for providing meteorological data and discharge estimates, and P. Tamminen (Finnish Forest Research Institute) and M. Starr (University of Helsinki) for providing mineral soil data.


  1. Aherne J, Posch M, Forsius M, Vuorenmaa J, Tamminen P, Holmberg M, Johansson M (2008) Modelling the hydro-geochemistry of acid-sensitive catchments in Finland under atmospheric deposition and biomass harvesting scenarios. Biogeochemistry 88(3):233–256CrossRefGoogle Scholar
  2. Äijälä O, Kuusinen M, Koistinen A (eds) (2010) Good forestry practices for harvesting and growing energy wood [in Finnish]. Tapio, Helsinki, p. 31
  3. Akselsson C, Westling O, Sverdrup H, Holmqvist J, Thelin G, Uggla E, Malm G (2007) Impact of harvest intensity on long-term base cation budgets in Swedish forest soils. Water Air Soil Pollut Focus 7:201–210CrossRefGoogle Scholar
  4. Akselsson C, Westling O, Alveteg M, Thelin G, Fransson A-M, Hellsten S (2008) The influence of N load and harvest intensity on the risk of P limitation in Swedish forest soils. Sci Total Environ 404(2–3):284–289Google Scholar
  5. Bonan GB, Van Cleve K (1992) Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests. Can J For Res 22:629–639CrossRefGoogle Scholar
  6. Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, Rik Brydson R, Benning LG (2009) Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37(7):615–618CrossRefGoogle Scholar
  7. Brady PV (1991) The effect of silicate weathering on global temperature and atmospheric CO2. J Geophys Res 96(B11):18101–18106CrossRefGoogle Scholar
  8. Bringmark L (1977) A bioelement budget of an old Scots pine forest in central Sweden. Silva Fenn 11:201–209Google Scholar
  9. Climate and Energy Strategy (2008) Long-term climate and energy strategy. Government Report to Parliament 6 Nov 2008, Ministry of Employment and the Economy, Helsinki, p. 130 (In Finnish with English summary). URL:
  10. Cosby BJ, Hornberger GM, Galloway JN, Wright RF (1985) Modeling the effects of acid deposition: assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resour Res 21:51–63CrossRefGoogle Scholar
  11. Cosby BJ, Ferrier RC, Jenkins A, Wright RF (2001) Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrol Earth Syst Sci 5:499–517CrossRefGoogle Scholar
  12. DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920CrossRefGoogle Scholar
  13. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. OJ L 140 of 5.6.2009, p. 16Google Scholar
  14. Finér L (1989) Biomass and nutrient cycle in fertilized and unfertilized pine, mixed birch and pine and spruce stands on a drained mire. Acta For Fenn 208:63Google Scholar
  15. Finér L, Brække FH (1991) Understorey vegetation on three ombrotrophic pine bogs and the effects of NPK and PK fertilization. Scand J For Res 6(1):113–128CrossRefGoogle Scholar
  16. Foresight Report (2009) Towards a Low-emission Society in Finland [in Finnish]. Foresight report on climate and energy policy of the government, Valtioneuvoston kanslian julkaisusarja 28/2009, Helsinki, p. 180Google Scholar
  17. Forsius M, Malin V, Mäkinen I, Mannio J, Kämäri J, Kortelainen P, Verta M (1990) Finnish lake acidification survey: survey design and random selection of lakes. Environmetrics 1(1):73–88CrossRefGoogle Scholar
  18. Forsius M, Johansson M, Posch M, Holmberg M, Kämäri J, Lepistö A, Roos J, Syri S, Starr M (1997) Modelling the effects of climate change, acidic deposition and forest harvesting on the biogeochemistry of a boreal forested catchment in Finland. Boreal Environ Res 2:129–143Google Scholar
  19. Forsius M, Vuorenmaa J, Mannio J, Syri S (2003) Recovery from acidification of Finnish lakes: regional patterns and relations to emission reduction policy. Sci Total Environ 310:121–132CrossRefGoogle Scholar
  20. Henriksen A, Posch M (2001) Steady-state models for calculating critical loads of acidity for surface waters. Water Air Soil Pollut Focus 1:375–398CrossRefGoogle Scholar
  21. Hettelingh J-P, Posch M, Slootweg J, Reinds GJ, Spranger T, Tarrason L (2007) Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. Water Air Soil Pollut Focus 7:379–384CrossRefGoogle Scholar
  22. Huber C, Aherne J, Weis W, Farrell EP, Göttlein A, Cummins T (2010) Ion concentrations and fluxes of seepage water before and after clear cutting of Norway spruce stands at Ballyhooly, Ireland, and Höglwald, Germany. Biogeochemistry 101:7–26CrossRefGoogle Scholar
  23. Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, Van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480CrossRefGoogle Scholar
  24. Hyvönen R, Persson T, Andersson S, Olsson B, Ågren GI, Linder S (2008) Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89:121–137CrossRefGoogle Scholar
  25. Jacobson S, Kukkola M, Mälkönen E, Tveite B, Möller G (1996) Growth response of coniferous stands to whole-tree harvesting in early thinnings. Scand J For Res 11:50–59CrossRefGoogle Scholar
  26. Jacobson S, Kukkola M, Mälkönen E, Tveite B (2000) Impact of whole-tree harvesting and compensatory fertilization on growth of coniferous thinning stands. For Ecol Manag 129:41–51CrossRefGoogle Scholar
  27. Järvinen O, Vänni T (1990) Bulk deposition chemistry in Finland. In: Kauppi P, Anttila P, Kenttämies K (eds) Acidification in Finland. Springer, Berlin, Heidelberg, pp 151–165CrossRefGoogle Scholar
  28. Joki-Heiskala P, Johansson M, Holmberg M, Mattsson T, Forsius M, Kortelainen P, Hallin L (2003) Long-term base cation balances of forest mineral soils in Finland. Water Air Soil Pollut 150:255–273CrossRefGoogle Scholar
  29. Jongmans AG, Van Breemen N, Lundström U, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683CrossRefGoogle Scholar
  30. Kämäri J, Forsius M, Kortelainen P, Mannio J, Verta M (1991) Finnish lake survey: present status of acidification. Ambio 20(1):23–27Google Scholar
  31. Kärkkäinen L, Matala J, Härkönen K, Kellomäki S, Nuutinen T (2008) Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland. Biomass Bioenergy 32:934–943CrossRefGoogle Scholar
  32. Kauppi P, Anttila P, Kenttämies K (eds) (1990) Acidification in Finland. Springer, Berlin and Heidelberg, p 1237Google Scholar
  33. Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362CrossRefGoogle Scholar
  34. Kortelainen P (1993) Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Can J Fish Aquat Sci 50(7):1477–1483CrossRefGoogle Scholar
  35. Kortelainen P, Mannio J, Forsius M, Kämäri J, Verta M (1989) Finnish lake survey: the role of organic and anthropogenic acidity. Water Air Soil Pollut 46:235–249Google Scholar
  36. Kump LR, Brantley SL, Arthur MA (2000) Chemical weathering, atmospheric CO2 and climate. Annu Rev Earth Planet Sci 28:611–667CrossRefGoogle Scholar
  37. Luiro J, Kukkola M, Saarsalmi A, Tamminen P, Helmisaari H-S (2010) Logging residue removal after thinning in boreal forests: long-term impact on the nutrient status of Norway spruce and Scots pine needles. Tree Physiol 30:78–88CrossRefGoogle Scholar
  38. Mälkönen E (1977) Annual primary production and nutrient cycle in birch stands. Comm Inst For Fenn 91(5):1–35Google Scholar
  39. Marklund LG (1988) Biomass functions for pine, spruce and birch in Sweden [in Swedish with English summary]. Report 45, Department of Forest Survey, Swedish University of Agricultural Sciences, Uppsala, p. 73Google Scholar
  40. METLA (2009) Finnish statistical yearbook of forestry 2009 [in Finnish with English annotations]. Finnish Forest Research Institute, Helsinki, p 452Google Scholar
  41. Moldan F, Cosby BJ, Wright RF (2009) Modelling the role of nitrogen in acidification of Swedish lakes: future scenarios of acid deposition, climate change and forestry practices. Report B1888, Swedish Environmental Research Institute (IVL), Göteborg, Sweden, p. 49Google Scholar
  42. ICP Integrated Monitoring (2004) ICP IM Manual: Procedure for calculating biomass and bioelements. Finnish Environment Institute, Helsinki. URL:
  43. Nadelhoffer KJ, Colman BP, Currie WS, Magill AH, Aber JD (2004) Decadal-scale fates of 15 N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA). For Ecol Manag 196(1):89–107CrossRefGoogle Scholar
  44. Nakićenović N, Alcamo J, Davis G, De Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Van Rooijen S, Victor N, Dadi Z (2000) Emissions Scenarios. A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, UK, p 599Google Scholar
  45. Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916CrossRefGoogle Scholar
  46. Olsson M, Rosén K, Melkerud P-A (1993) Regional modelling of base cation losses from Swedish forest soils due to whole-tree harvesting. Appl Geochem 2:189–194CrossRefGoogle Scholar
  47. Park J-H, Duan L, Kim B, Mitchell MJ, Shibata H (2010) Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia. Environ Int 36:212–225CrossRefGoogle Scholar
  48. Posch M, Kämäri J, Forsius M, Henriksen A, Wilander A (1997) Exceedance of critical loads for lakes in Finland, Norway and Sweden: reduction requirements for acidifying nitrogen and sulfur deposition. Environ Manag 21(2):291–304CrossRefGoogle Scholar
  49. Posch M, Aherne J, Forsius M, Fronzek S, Veijalainen N (2008) Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland. Hydrol Earth Syst Sci 12:449–463CrossRefGoogle Scholar
  50. Powers RF, Scott DA, Sanchez FG, Voldseth RA, Page-Dumroese D, Elioff JD, Stone DM (2005) The North American long-term soil productivity experiment: findings from the first decade of research. For Ecol Manag 220:31–50CrossRefGoogle Scholar
  51. Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci 104(24):10288–10293CrossRefGoogle Scholar
  52. Redsven V, Anola-Pukkila A, Haara A, Hirvelä H, Härkönen K, Kettunen L et al (2004) MELA2002 Reference manual, 2nd edn. Finnish Forest Research Institute, HelsinkiGoogle Scholar
  53. Reinds GJ, Posch M, Leemans R (2009) Modelling recovery from soil acidification in European forests under climate change. Sci Total Environ 407:5663–5673CrossRefGoogle Scholar
  54. Repo A, Tuomi M, Liski J (2010) Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. GCB Bioenergy. doi: 10.1111/j.1757-1707.2010.01065.x
  55. Schöpp W, Posch M, Mylona S, Johansson M (2003) Trends in acid deposition (1880–2030) for sensitive freshwater regions in Europe. Hydrol Earth Syst Sci 7:436–446CrossRefGoogle Scholar
  56. Sievänen R, Kareinen T, Hirvelä H, Ilvesniemi H (2007) Greenhouse gas budgets based on forest harvesting scenarios [in Finnish]. Metsätieteen aikakauskirja 4(2007):329–339Google Scholar
  57. Simpson D, Fagerli H, Jonson JE, Tsyro S, Wind P, Tuovinen J-P (2003) Transboundary acidification, eutrophication and ground level ozone in Europe: Unified EMEP model description. EMEP Status Report 1/2003 Part I, Norwegian Meteorological Institute, Oslo, Norway.URL:
  58. Sverdrup HU (1990) The kinetics of base cation release due to chemical weathering. Lund University Press, Lund, p 246Google Scholar
  59. Sverdrup HU (2009) Chemical weathering of soil minerals and the role of biological processes. Fungal Biol Rev 23:94–100CrossRefGoogle Scholar
  60. Sverdrup H, Warfvinge P (1993) Calculating field weathering rates using a mechanistic geochemical model PROFILE. Appl Geochem 8:273–283CrossRefGoogle Scholar
  61. Tamm CO, Aronsson A, Popovic B, Flower-Ellis J (1999) Optimum nutrition and nitrogen saturation in Scots pine stands. Studia Forestalia Suecica 206:7–126Google Scholar
  62. Tamminen P, Starr MR (1990) A survey of forest soil properties related to soil acidification in southern Finland. In: Kauppi P, Anttila P, Kenttämies K (eds) Acidification in Finland. Springer, Berlin, Heidelberg, pp 231–247Google Scholar
  63. Thiffault E, Pare D, Belanger N, Munson A, Marquis F (2006) Harvesting intensity at clear-felling in the boreal forest: Impact on soil and foliar nutrient status. Soil Sci Soc Am J 70:691–701CrossRefGoogle Scholar
  64. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels–the food, energy, and environment trilemma. Nature 325:270–271Google Scholar
  65. UBA (2004) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. UNECE convention on long-range transboundary air pollution. Federal Environmental Agency, BerlinGoogle Scholar
  66. Vehviläinen B (2007) Hydrological forecasting and real-time monitoring: the watershed simulation and forecasting system (WSFS). In: Heinonen P, Ziglio G, Van der Beken A (eds) Hydrological and limnological aspects of lake monitoring. Water quality measurements series. Wiley, Chichester, pp 13–20Google Scholar
  67. Velbel MA (1993) Temperature dependence of silicate weathering in nature: How strong a negative feedback on long-term accumulation of atmospheric CO2 and global greenhouse warming? Geology 21:1059–1062CrossRefGoogle Scholar
  68. Veroustraete F, Sabbe H, Eerens H (2002) Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens Environ 83:376–399CrossRefGoogle Scholar
  69. Vuorenmaa J (2004) Long-term changes of acidifying deposition in Finland (1973–2000). Environ Pollut 128:351–362CrossRefGoogle Scholar
  70. Vuorenmaa J, Forsius M (2008) Recovery of acidified Finnish lakes: trends, patterns and dependence of catchment characteristics. Hydrol Earth Syst Sci 12:465–478CrossRefGoogle Scholar
  71. Walmsley JD, Godbold DL (2009) Stump harvesting for bioenergy: a review of the environmental impacts. Forestry 83(1):17–38CrossRefGoogle Scholar
  72. White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59(9):1729–1747CrossRefGoogle Scholar
  73. Wright RF (1998) Effect of increased CO2 and temperature on runoff chemistry at a forested catchment in southern Norway (CLIMEX project). Ecosystems 1:216–225CrossRefGoogle Scholar
  74. Wright RF, Aherne J, Bishop K, Camarero L, Cosby BJ, Erlandsson M, Evans CD, Forsius M, Hardekopf DW, Helliwell R, Hruska J, Jenkins A, Kopácek J, Moldan F, Posch M, Rogora M (2006) Modelling the effect of climate change on recovery of acidified freshwaters: relative sensitivity of individual processes in the MAGIC model. Sci Total Environ 365:154–166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Julian Aherne
    • 1
  • Maximilian Posch
    • 2
  • Martin Forsius
    • 3
  • Aleksi Lehtonen
    • 4
  • Kari Härkönen
    • 4
  1. 1.Environmental and Resource StudiesTrent UniversityPeterboroughCanada
  2. 2.Coordination Centre for Effects (CCE), RIVMBilthovenThe Netherlands
  3. 3.Finnish Environment Institute (SYKE)HelsinkiFinland
  4. 4.Finnish Forest Research Institute (METLA)VantaaFinland

Personalised recommendations