Biogeochemistry

, Volume 107, Issue 1–3, pp 501–506

Southeastern U.S.A. continental shelf respiratory rates revisited

  • Joan E. Sheldon
  • Peter C. Griffith
  • Francesc Peters
  • Wade M. SheldonJr.
  • Jackson O. Blanton
  • Julie Amft
  • Lawrence R. Pomeroy
Article

Abstract

Respiratory rates on the U. S. southeastern continental shelf have been estimated several times by different investigators, most recently by Jiang et al. (Biogeochemistry 98:101–113, 2010) who report lower mean rates than were found in earlier work and attribute the differences to analytical error in all methods used in earlier studies. The differences are, instead, attributable to the differences in the geographical scope of the studies. The lower estimates of regional organic carbon flux of Jiang et al. (Biogeochemistry 98:101–113, 2010) are a consequence of their extrapolation of data from a small portion of the shelf to the entire South Atlantic Bight. This comment examines the methodologies used as well as the variability of respiratory rates in this region over space and time.

Keywords

Microbial respiration Southeastern U. S. continental shelf Dissolved oxygen Bacteria 

References

  1. Anderson WW, Gehringer JW, Cohen E (1956–1959) Physical oceanographic, biological, and chemical data—South Atlantic coast of the United States. U. S. Fish Wildl Ser Spec Sci Rep Fish, 178, 198, 210, 234, 248, 265, 278Google Scholar
  2. Atkinson LP, Menzel DW, Bush KA (eds) (1985) Oceanography of the southeastern U.S. continental shelf, vol 2. American Geophysical Union, Washington DCGoogle Scholar
  3. Bishop SS, Yoder JA, Paffenhöfer G-A (1980) Phytoplankton and nutrient variability along a cross-shelf transect off Savannah, Georgia, USA. Estuar Coast Shelf Sci 11:359–368Google Scholar
  4. Cai W-J, Wang ZA, Wang Y (2003) The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land-sea interface and the ocean. Geophys Res Lett 30(16):1849–1852CrossRefGoogle Scholar
  5. Chen C-TA, Borges AV (2009) Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Res II 56:578–590CrossRefGoogle Scholar
  6. Chen C-C, Shiah F-K, Chiang K-P, Gong G-C, Kemp WM (2009) Effects of the Changjiang (Yangtze) river discharge on planktonic community respiration in the East China Sea. J Geophys Res 114:C03005. doi:10.1029/2008JC004891 CrossRefGoogle Scholar
  7. García-Martín EE, Serret P, Pérez-Lorenzo M (2010) Testing potential bias in marine plankton respiration rates by dark bottle incubations in the NW Iberian shelf: incubation time and bottle volume. Cont Shelf Res (in press)Google Scholar
  8. Griffith PC (1988) A high-precision respirometer for measuring small rates of change in the oxygen concentration of natural waters. Limnol Oceanogr 33(4):632–638CrossRefGoogle Scholar
  9. Griffith PC, Pomeroy LR (1995) Seasonal and spatial variations in pelagic community respiration on the southeastern US continental shelf. Cont Shelf Res 15(7):815–825CrossRefGoogle Scholar
  10. Griffith PC, Douglas DJ, Wainright SC (1990) Metabolic activity of size-fractionated microbial plankton in estuarine, nearshore, and continental shelf waters of Georgia. Mar Ecol Prog Ser 59:263–270CrossRefGoogle Scholar
  11. Hammes F, Vital M, Egli T (2010) Critical evaluation of the volumetric “bottle effect” on microbial batch growth. Appl Environ Microbiol 76(4):1278–1281CrossRefGoogle Scholar
  12. Jahnke RA, Blanton JO (2010) The Gulf Stream. In: Liu K-K, Atkinson LP, Quiñones RA, Talaue-McManus L (eds) Carbon and nutrient fluxes in continental margins: a global synthesis. Global change—the IGBP series. Springer, Stockholm, pp 146–153. doi:10.1007/978-3-540-92735-8 Google Scholar
  13. Jahnke RA, Nelson JR, Marinelli FL, Eckman JE (2000) Benthic flux of biogenic elements on the southeastern U.S. continental shelf: influence of pore water advective transport and benthic algae. Cont Shelf Res 20:109–127CrossRefGoogle Scholar
  14. Jiang L-Q, Cai W-J, Wanninkhof R, Wang Y, Lüger H (2008) Air-sea CO2 fluxes on the U.S. South Atlantic Bight: spatial and seasonal variability. J Geophys Res 113:C07019. doi:10.1029/2007JC004366 CrossRefGoogle Scholar
  15. Jiang L-Q, Cai W-J, Wang Y, Diaz J, Yager PL, Hu X (2010) Pelagic community respiration on the continental shelf off Georgia, USA. Biogeochemistry 98:101–113CrossRefGoogle Scholar
  16. Kourafalou VH, Oey L-Y, Wang JD, Lee TN (1996a) The fate of river discharge on the continental shelf 1. Modeling the river plume and inner shelf coastal current. J Geophys Res Ocean 101:3425–3434Google Scholar
  17. Kourafalou VH, Lee TN, Oey L-Y, Wang JD (1996b) The fate of river discharge on the continental shelf 2. Transport of low-salinity coastal waters under realistic wind and tidal forcing. J Geophys Res Ocean 101:3435–3455CrossRefGoogle Scholar
  18. Labasque T, Chaumery C, Aminot A, Kergoat G (2004) Spectrophotometric Winkler determination of dissolved oxygen: re-examination of critical factors and reliability. Mar Chem 88:53–60CrossRefGoogle Scholar
  19. Lee TN, Yoder JA, Atkinson LP (1991) Gulf Stream frontal eddy influence on productivity of the southeast U.S. continental shelf. J Geophys Res Ocean 96(12):22191–22205CrossRefGoogle Scholar
  20. Liu K-K, Atkinson LP, Quiñones RA, Talaue-McManus L (2010) Biogeochemistry of continental margins in a global context. In: Liu K-K, Atkinson LP, Quiñones RA, Talaue-McManus L (eds) Carbon and nutrient fluxes in continental margins: a global synthesis. Global change—the IGBP series. Springer, Stockholm, pp 3–24. doi:10.1007/978-3-540-92735-8 CrossRefGoogle Scholar
  21. Longhurst A, Sathyendranath S, Platt T, Cayerhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271CrossRefGoogle Scholar
  22. McKinnon AD, Carleton JH, Duggan S (2007) Pelagic production and respiration in the Gulf of Papua during May 2004. Cont Shelf Res 27:1643–1655CrossRefGoogle Scholar
  23. Menzel DW (ed) (1993) Ocean processes: U.S. southeast continental shelf. U.S. Department of Energy, Office of Scientific and Technical Information, Oak RidgeGoogle Scholar
  24. Paffenhöfer G-A (1985) The abundance and distribution of zooplankton on the southeastern shelf of the United States. In: Atkinson LP, Menzel DW, Bush KA (eds) Oceanography of the southeastern U.S. continental shelf. American Geophysical Union, Washington DC, pp 104–117Google Scholar
  25. Pomeroy LR, Sheldon JE, Sheldon WM Jr (1994) Changes in bacterial numbers and leucine assimilation during estimations of microbial respiratory rates in seawater by the precision Winkler method. Appl Environ Microbiol 60(1):328–332Google Scholar
  26. Pomeroy LR, Sheldon JE, Sheldon WM Jr, Blanton JO, Amft J, Peters F (2000) Seasonal changes in microbial processes in estuarine and continental shelf waters of the south-eastern U.S.A. Estuar Coast Shelf Sci 51:415–428CrossRefGoogle Scholar
  27. Smith SV, Mackenzie FT (1987) The ocean as a net heterotrophic system: implications from the carbon biogeochemical cycle. Glob Biogeochem Cycles 1(3):187–198CrossRefGoogle Scholar
  28. Wang ZA, Cai W-J, Wang Y, Ji H (2005) The southeastern continental shelf of the United States as an atmospheric CO2 source and an exporter of inorganic carbon to the ocean. Cont Shelf Res 25:1917–1941CrossRefGoogle Scholar
  29. Wiebe WJ, Sheldon WM Jr, Pomeroy LR (1993) Evidence for an enhanced substrate requirement by marine mesophilic bacterial isolates at minimal growth temperatures. Microb Ecol 25:151–159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Joan E. Sheldon
    • 1
  • Peter C. Griffith
    • 2
  • Francesc Peters
    • 3
  • Wade M. SheldonJr.
    • 1
  • Jackson O. Blanton
    • 4
  • Julie Amft
    • 4
  • Lawrence R. Pomeroy
    • 5
  1. 1.Department of Marine SciencesUniversity of GeorgiaAthensUSA
  2. 2.Sigma Space Corporation, Carbon Cycle and Ecosystems Office, Code 614.4NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Institut de Ciencies del Mar, CSICBarcelonaSpain
  4. 4.Skidaway Institute of OceanographySavannahUSA
  5. 5.Institute of EcologyUniversity of GeorgiaAthensUSA

Personalised recommendations