Biogeochemistry

, Volume 104, Issue 1–3, pp 381–392 | Cite as

Cross-stream comparison of substrate-specific denitrification potential

  • S. E. G. Findlay
  • P. J. Mulholland
  • S. K. Hamilton
  • J. L. Tank
  • M. J. Bernot
  • A. J. Burgin
  • C. L. Crenshaw
  • W. K. Dodds
  • N. B. Grimm
  • W. H. McDowell
  • J. D. Potter
  • D. J. Sobota
Article

Abstract

Headwater streams have a demonstrated ability to denitrify a portion of their nitrate (NO3) load but there has not been an extensive consideration of where in a stream this process is occurring and how various habitats contribute to total denitrification capability. As part of the Lotic Intersite Nitrogen Experiment II (LINX II) we measured denitrification potential in 65 streams spanning eight regions of the US and draining three land-use types. In each stream, potential denitrification rates were measured in common substrate types found across many streams as well as locations unique to particular streams. Overall, habitats from streams draining urban and agricultural land-uses showed higher potential rates of denitrification than reference streams draining native vegetation. This difference among streams was probably driven by higher ambient nitrate concentrations found in urban or agricultural streams. Within streams, sandy habitats and accumulations of fine benthic organic matter contributed more than half of the total denitrification capacity (mg N removed m−2 h−1). A particular rate of potential denitrification per unit area could be achieved either by high activity per unit organic matter or lower activities associated with larger standing stocks of organic matter. We found that both small patches with high rates (hot spots) or more widespread but less active areas (cool matrix) contributed significantly to whole stream denitrification capacity. Denitrification estimated from scaled-up denitrification enzyme assay (DEA) potentials were not always dramatically higher than in situ rates of denitrification measured as 15N gas generation following 24-h 15N–NO3 tracer additions. In general, headwater streams draining varying land-use types have significant potential to remove nitrate via denitrification and some appear to be functioning near their maximal capacity.

Keywords

Stream Denitrification DEA Comparative Substrate-specific Comparison of potential with realized denitrification 

References

  1. Alexander RB, Smith RA, Schwarz GE (2000) Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403:758–761CrossRefGoogle Scholar
  2. Arango CP, Tank JL (2008) Land use influences the spatiotemporal controls on denitrification in headwater streams. J N Am Benthol Soc 27:90–107CrossRefGoogle Scholar
  3. Arango CP, Tank JL, Schaller JL et al (2007) Benthic organic carbon influences denitrification in streams with high nitrate concentration. Freshwat Biol 52:1210–1222CrossRefGoogle Scholar
  4. Battin TJ, Kaplan LA, Findlay SEG, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100CrossRefGoogle Scholar
  5. Bernhardt ES, Likens GE, Hall RO et al (2005) Can’t see the forest for the stream?––In-stream processing and terrestrial nitrogen exports. Bioscience 55:219–230CrossRefGoogle Scholar
  6. Bernot MJ, Dodds WK (2005) Nitrogen retention, removal, and saturation in lotic ecosystems. Ecosystems 8:442–453CrossRefGoogle Scholar
  7. Bernot MJ, Dodds WK, Gardner WS, McCarthy MJ, Sobolev D, Tank JL (2003) Comparing denitrification estimates for a Texas estuary by using acetylene inhibition and membrane inlet mass spectrometry. Appl Environ Microbiol 69:5950–5956CrossRefGoogle Scholar
  8. Craig LS, Palmer MA, Richardson DC et al (2008) Stream restoration strategies for reducing river nitrogen loads. Front Ecol Environ 6:529–538CrossRefGoogle Scholar
  9. Dent CL, Grimm NB, Martí E, Edmonds JW, Henry JC, Welter JR (2007) Variability in surface-subsurface hydrologic interactions and implications for nutrient retention in an arid-land stream. J Geophys Res 112. doi:10.1029/2007JG000467
  10. Frost PC, Kinsman LE, Johnston CA et al (2009) Watershed discharge modulates relationships between landscape components and nutrient ratios in stream seston. Ecology 90:1631–1640CrossRefGoogle Scholar
  11. Garcıa-Ruiz R, Pattinson SN, Whitton BA (1998) Kinetic parameters of denitrification in a river continuum. Appl Environ Microbiol 64:2533–2538Google Scholar
  12. Gooseff MN, McKnight DM, Runkel RL et al (2004) Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnol Oceanogr 49:1884–1895CrossRefGoogle Scholar
  13. Grimm NB, Sheibley RW, Crenshaw C, Dahm CN, Roach WJ, Zeglin L (2005) N retention and transformation in urban streams. J N Am Benthol Soc 24:626–642Google Scholar
  14. Groffman P, Butterbach-Bahl K, Fulweiler R, Gold A, Morse J, Stander E, Tague C, Tonitto C, Vidon P (2009) Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93:49–77CrossRefGoogle Scholar
  15. Holmes RM, Jones JB Jr, Fisher SG, Grimm NB (1996) Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 33:125–146CrossRefGoogle Scholar
  16. Johnson LB, Richards C, Host GE et al (1997) Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwat Biol 37:193–208CrossRefGoogle Scholar
  17. Kemp MJ, Dodds WK (2002) The influence of ammonium, nitrate, and dissolved oxygen concentrations on uptake, nitrification, and denitrification rates associated with prairie stream substrata. Limnol Oceanogr 47:1380–1393CrossRefGoogle Scholar
  18. Knapp C, Dodds W, Wilson K, O’Brien J, Graham D (2009) Spatial heterogeneity of denitrification genes in a highly homogenous urban stream. Environ Sci Technol 43:4273CrossRefGoogle Scholar
  19. Kulkarni MV, Groffman PM, Yavitt JB (2008) Solving the global nitrogen problem: it’s a gas!. Frontiers Ecol Environ 6:199–206CrossRefGoogle Scholar
  20. Lautz LK, Siegel DI (2007) The effect of transient storage on nitrate uptake lengths in streams: an inter-site comparison. Hydrol Process 21:3533–3548CrossRefGoogle Scholar
  21. McClain ME, Boyer EW, Dent CL et al (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312CrossRefGoogle Scholar
  22. Mulholland PJ, Helton AM, Poole GC, Hall RO, Hamilton SK, Peterson BJ, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Findlay S, Gregory SV, Grimm NB, Johnson SL, McDowell WH, Meyer JL, Valett HM, Webster JR, Arango C, Beaulieu JJ, Bernot MJ, Burgin AJ, Crenshaw C, Johnson L, Niederlehner BR, O’Brien JM, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–205CrossRefGoogle Scholar
  23. Mulholland PJ, Hall RO, Sobota DJ, Dodds WK, Findlay S, Grimm NB, Hamilton SK, McDowell WH, O’Brien JM, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Gregory SV, Johnson SL, Meyer JL, Peterson BJ, Poole GC, Valett HM, Webster JR, Arango C, Beaulieu JJ, Bernot MJ, Burgin AJ, Crenshaw C, Helton AM, Johnson L, Niederlehner BR, Potter JD, Sheibley RW, Thomas SM (2009) Nitrate removal in stream ecosystems measured by 15 N addition experiments: denitrification. Limnol Oceanogr 54:666–680CrossRefGoogle Scholar
  24. O’Brien JM, Dodds WK, Wilson KC, Murdock JN, Eichmiller J (2007) The saturation of N cycling in Central Plains streams: 15 N experiments across a broad gradient of nitrate concentrations. Biogeochemistry 84:31–49CrossRefGoogle Scholar
  25. Peterson BJ, Wollheim WM, Mulholland PJ, Webster JR, Meyer JL, Tank JL, Marti E, Bowden WB, Valett HM, Hershey AE, McDowell WH, Dodds WK, Hamilton SK, Gregory S, Morrall DD (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–90CrossRefGoogle Scholar
  26. Piña-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130CrossRefGoogle Scholar
  27. Roach WJ, Grimm NB (2009) Nutrient variation in an urban lake chain and its consequences for phytoplankton production. J Environ Qual 38:1429–1440CrossRefGoogle Scholar
  28. Royer TV, Tank JL, David MB (2004) Transport and fate of nitrate in headwater agricultural streams in Illinois. J Environ Qual 33:1296–1304CrossRefGoogle Scholar
  29. Schaller JL, Royer TV, David MB, Tank JL (2004) Denitrification associated with plants and sediments in an agricultural stream. J N Am Benthol Soc 23:667–676CrossRefGoogle Scholar
  30. Seitzinger SP, Harrison JA, Böhlke JK, Bouman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090CrossRefGoogle Scholar
  31. Sheibley RW, Duff JH, Jackman AP et al (2003) Inorganic nitrogen transformations in the bed of the Shingobee River, Minnesota: integration of hydrologic and biological processes using sediment perfusion cores. Limnol Oceanogr 48:1129–1140CrossRefGoogle Scholar
  32. Smith MS, Tiedje JM (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol Biochem 11:262–267Google Scholar
  33. Steinhart GS, Likens GE, Groffman PM (2000) Denitrification in stream sediments in five northeastern (USA) streams. Verh Int Ver Limnol 27:1331–1336Google Scholar
  34. Triska FJ, Kennedy VC, Avanzino RJ et al (1989) Retention and transport of nutrients in a 3rd-order stream in northwestern California–hyporheic processes. Ecology 70:1893–1905CrossRefGoogle Scholar
  35. Turner RE, Rabalais NN, Justic D (2008) Gulf of Mexico hypoxia: alternate states and a legacy. Environ Sci Technol 42:2323–2327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • S. E. G. Findlay
    • 1
  • P. J. Mulholland
    • 2
  • S. K. Hamilton
    • 3
  • J. L. Tank
    • 4
  • M. J. Bernot
    • 5
  • A. J. Burgin
    • 1
  • C. L. Crenshaw
    • 6
  • W. K. Dodds
    • 7
  • N. B. Grimm
    • 8
  • W. H. McDowell
    • 9
  • J. D. Potter
    • 9
  • D. J. Sobota
    • 10
  1. 1.Cary Institute of Ecosystem StudiesMillbrookUSA
  2. 2.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Kellogg Biological StationMichigan State UniversityHickory CornersUSA
  4. 4.Department of Biological SciencesUniversity of Notre DameNotre DameUSA
  5. 5.Department of BiologyBall State UniversityMuncieUSA
  6. 6.Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  7. 7.Division of BiologyKansas State UniversityManhattanUSA
  8. 8.School of Life SciencesArizona State UniversityTempeUSA
  9. 9.Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamUSA
  10. 10.Department of Fisheries and WildlifeOregon State UniversityCorvallisUSA

Personalised recommendations