Advertisement

Biogeochemistry

, Volume 106, Issue 1, pp 89–106 | Cite as

Characterisation of dissolved organic matter in Parisian urban aquatic systems: predominance of hydrophilic and proteinaceous structures

  • B. Pernet-Coudrier
  • G. Varrault
  • M. Saad
  • J. P. Croue
  • M.-F. Dignac
  • J.-M. Mouchel
Article

Abstract

Understanding the nature of organic matter is a necessary first step in assessing contaminant bioavailability and allowing water supply managers to optimise the treatment train in the aim of providing safe and inexpensive drinking water. This study provides further insight into the composition, structure and functional groups of dissolved organic matter (DOM) (both hydrophobic and hydrophilic) from urban aquatic systems by means of various analytical techniques (DAX-8/XAD-4 fractionation, elemental analysis, UV and FTIR spectroscopies, 13C and 15N isotopic analysis, size exclusion chromatography and Pyrolysis-GC-MS). The analytical range chosen for this study constitutes a powerful tool in the characterisation of DOM in urban water. The inclusion of information from one technique to the next might not only serve as a support to each one, but also as a complement. The DOM fraction from treated effluent and, more generally, DOM from urban water (i.e. receiving treated effluent) display a strong hydrophilic characteristic [i.e. low humic substance (HS) content, low SUVA], along with a high distribution in molecular weights observed by SEC and low average molecular weight. Due to the origin of this DOM, proteinaceous structures constitute the main compounds, as observed by FTIR and Py-GC-MS. Such characteristics (i.e. heterogeneity, low average molecular weight and diverse functional groups, which make up a total of N) could explain that DOM from treated effluent displayed a strong reactive potential metals pollutants as previously demonstrated.

Keywords

Dissolved organic matter Isolation Characterisation Composition Hydrophilic/hydrophobic 

Abbreviations

DEHP

Diethylhexyl phthalate

DOC

Dissolved organic carbon

DOM

Dissolved organic matter

FTIR

Fourier transformed infrared

HPI

Hydrophilic

HPO

Hydrophobic

HS

Humic substances

NHS

Non-humic substances

Py-GC-MS

Pyrolysis associated with gas chromatography and mass spectrometry

RO

Reverse osmosis

SRFA

Suwannee River fulvic acid

SEC

Size exclusion chromatography

SUVA

Specific ultraviolet absorbance

TPI

Transphilic

WWTP

Wastewater treatment plant

Notes

Acknowledgements

The authors would like to thank the Paris Metropolitan Wastewater Authority (SIAAP) for providing access to the sampling site. Gratitude is also addressed to David Violleau for his valuable assistance in DOM fractionation, and to Leslie Curie for her technical assistance and the French Ministry of Research and Higher Education for its financial support in the form of a Ph.D. grant awarded to Benoît Pernet-Coudrier. This research work has also been financed by the French National Research Agency (ANR), as part of the BIOMET JC05_59809 project.

References

  1. Ackroff K, Lucas F, Sclafani A (2005) Flavor preference conditioning as a function of fat source. Physiol Behav 85(4):448–460CrossRefGoogle Scholar
  2. Barber LB, Brown GK, Kennedy KR, Leenheer JA, Noyes TI, Rostad CE, Thorn KA (1997) Organic constituents that persist during aquifer storage and recovery of reclaimed water in Los Angeles County, California. In Conjunctive use of water resources: aquifer storage and recovery. Proceedings of the American water resources association symposium, October 19–23, Long Beach, California, pp 261–271Google Scholar
  3. Barber LB, Leenheer JA, Noyes TI, Stiles EA (2001) Nature and transformation of dissolved organic matter in treatment wetlands. Environ Sci Technol 35:4805–4816CrossRefGoogle Scholar
  4. Bracewell JM, Pacey N, Robertson GW (1987) Organic matter in onshore cretaceous chalks and its variations, investigated by pyrolysis-mass spectrometry. J Anal Appl Pyrolysis 10(3):199–213CrossRefGoogle Scholar
  5. Buerge IJ, Poiger T, Muller MD, Buser H-R (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37(4):691–700CrossRefGoogle Scholar
  6. Buffle J (1988) Complexation reactions. In: Masson M, Tyson JF (eds) Aquatic systems: an analytical approach. Ellis Horwood, New York, 692 ppGoogle Scholar
  7. Buzier R, Tusseau-Vuillemin M-H, Mouchel J-M (2006) Evaluation of DGT as a metal speciation tool in wastewater. Sci Total Environ 358:277–285CrossRefGoogle Scholar
  8. Cabaniss SE, Shuman MS (1988) Copper binding by dissolved organic matter: I. Suwannee River fulvic acid equilibria. Geochim Cosmochim Acta 52(1):185–193CrossRefGoogle Scholar
  9. Chi F-H, Amy GL (2004) Kinetic study on the sorption of dissolved natural organic matter onto different aquifer materials: the effects of hydrophobicity and functional groups. J Colloid Interf Sci 274(2):380–391CrossRefGoogle Scholar
  10. Chiavari G, Galletti GC (1992) Pyrolysis/gas chromatography/mass spectrometry of amino acids. J Anal Appl Pyrolysis 24(2):123–137CrossRefGoogle Scholar
  11. Chin Y-P, Alken G, O’Loughlin E (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28(11):1853–1858CrossRefGoogle Scholar
  12. Chipasa KB, Mdrzycka K (2008) Characterization of the fate of lipids in activated sludge. J Environ Sci 20(5):536–542CrossRefGoogle Scholar
  13. Croué JF (2004) Isolation of humic and non-humic nom fractions: structural characterization. Environ Monit Assess 92:193–207CrossRefGoogle Scholar
  14. Croué JP, Benedetti MF, Violleau D, Leenheer JA (2003) Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: evidence for the presence of nitrogenous binding site. Environ Sci Technol 37(2):328–336CrossRefGoogle Scholar
  15. Decker M, Ronn B, Jorgensen SS (2000) Thermally assisted in-line methylation and gas chromatography with statistical data analysis for determination of fatty acid distribution and fingerprinting of plant seeds and oils. Eur Food Res Technol 211(5):366–373CrossRefGoogle Scholar
  16. Deegan LA, Garritt RH (1997) Evidence for spatial variability in estuarine food webs. Mar Ecol Prog Ser 147(1–3):31–47CrossRefGoogle Scholar
  17. Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 329–406Google Scholar
  18. Deniro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42(5):495–506CrossRefGoogle Scholar
  19. Determan H (1968) Gel chromatography, gel filtration, gel permeation, molecular sieves. Springer-Verlag, New YorkGoogle Scholar
  20. Dignac M-F, Derenne S, Ginestet P, Bruchet A, Knicker H, Largeau C (2000) Determination of structure and origin of refractory organic matter in bio-epurated wastewater via spectroscopic methods. Comparison of conventional and ozonation treatments. Environ Sci Technol 34(16):3389–3394CrossRefGoogle Scholar
  21. Dignac M-F, Houot S, Derenne S (2006) How the polarity of the separation column may influence the characterization of compost organic matter by pyrolysis-gc/ms. J Anal Appl Pyrolysis 75(2):128–139CrossRefGoogle Scholar
  22. Drewes JE, Croue JP (2002) New approaches for structural characterization of organic matter in drinking water and wastewater effluents. In: 2nd World Water Congress: drinking water treatment, water science and technology: water supply, pp 1–10Google Scholar
  23. Eudy LW, Walla MD, Hudson JR, Morgan SL, Fox A (1985) Gas chromatography–mass spectrometry studies on the occurrence of acetamide, propionamide, and furfuryl alcohol in pyrolyzates of bacteria, bacterial fractions, and model compounds. J Anal Appl Pyrolysis 7(3):231–247CrossRefGoogle Scholar
  24. Frimmel FH, Abbt-Braun G (1999) Basic characterization of reference nom from central Europe—similarities and differences. Environ Int 25(2–3):191–207CrossRefGoogle Scholar
  25. Galletti GC, Reeves JB (1992) Pyrolysis/gas chromatography/ion-trap detection of polyphenols (vegetable tannins): preliminary results. Org Mass Spectrom 27(3):226–230CrossRefGoogle Scholar
  26. Gasperi J, Garnaud S, Rocher V, Moilleron R (2008) Priority pollutants in wastewater and combined sewer overflow. Sci Total Environ 407(1):263–272CrossRefGoogle Scholar
  27. Gjessing ET (1997) Editorial on the nom typing project. Newsletter no. l/97. Norwegian Institute for Water Research and Agder College, Kristiansand, NorwayGoogle Scholar
  28. Guo LD, Zhang JZ, Gueguen C (2004) Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River. Glob Biogeochem Cycles 18(1):GB1038Google Scholar
  29. Hall JA, Kalin RM, Larkin MJ, Allen CCR, Harper DB (1999) Variation in stable carbon isotope fractionation during aerobic degradation of phenol and benzoate by contaminant degrading bacteria. Org Geochem 30(8):801–811CrossRefGoogle Scholar
  30. Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27(5–6):195–212CrossRefGoogle Scholar
  31. Her N, Amy G, Park H-R, Song M (2004) Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Res 38(6):1427–1438CrossRefGoogle Scholar
  32. Hertkorn N, Claus H, Schmitt-Kopplin P, Perdue EM, Filip Z (2002) Utilization and transformation of aquatic humic substances by autochthonous microorganisms. Environ Sci Technol 36(20):4334–4345CrossRefGoogle Scholar
  33. Hur J, Schlautman MA (2003) Molecular weight fractionation of humic substances by adsorption onto minerals. J Colloid Interf Sci 264(2):313–321CrossRefGoogle Scholar
  34. Hyne RV, Pablo F, Julli M, Markich SJ (2005) Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia cf dubia. Environ Toxicol Chem 24(7):1667–1675CrossRefGoogle Scholar
  35. Imai A, Fukushima T, Matsushige K, Hwan Kim Y (2001) Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake, its inflowing rivers, and other organic matter sources. Water Res 35(17):4019–4028CrossRefGoogle Scholar
  36. Imai A, Fukushima T, Matsushige K, Kim Y-H, Choi K (2002) Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Res 36(4):859–870CrossRefGoogle Scholar
  37. Ishiwatari R, Yamamoto S, Handa N (1995) Characterization of sinking particles in the ocean by pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrolysis 32:75–89CrossRefGoogle Scholar
  38. Jarusutthirak C, Amy G, Croué J-P (2000) Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Desalination 145(1–3):247–255Google Scholar
  39. Kalbitz K, Geyer W, Geyer S (1999) Spectroscopic properties of dissolved humic substances—a reflection of land use history in a fen area. Biogeochemistry 47(2):219–238Google Scholar
  40. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576Google Scholar
  41. Kiikkilä O, Kitunen V, Smolander A (2006) Dissolved soil organic matter from surface organic horizons under birch and conifers: degradation in relation to chemical characteristics. Soil Biol Biochem 38(4):737–746CrossRefGoogle Scholar
  42. Kukkonen J, Oikari A (1991) Bioavailability of organic pollutants in boreal waters with varying levels of dissolved organic material. Water Res 25(4):455–463CrossRefGoogle Scholar
  43. Lam B, Simpson AJ (2008) Direct H-1 NMR spectroscopy of dissolved organic matter in natural waters. Analyst 133(2):263–269CrossRefGoogle Scholar
  44. Leenheer JA (1981) Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environ Sci Technol 15(5):578–587CrossRefGoogle Scholar
  45. Leenheer JA, Croué J-P (2003) Characterized aquatic dissolved organic matter. Environ Sci Technol 37(1):19–26CrossRefGoogle Scholar
  46. Leenheer JA, Rostad CE (2004) Fractionation and characterization of organic matter in wastewater from a Swine waste-retention basin. Scientific investigations report 2004-5217. U.S. Department of the Interior and U.S. Geological Survey, 21Google Scholar
  47. Leenheer JA, Croué JF, Benjamin M, Korshin GV, Hwang CJ, Bruchet A, Aiken GR (2000) Comprehensive isolation of natural organic matter from water for spectral characterizations and reactivity testing. In: ACS symposium series 76, Washington, DC, pp 68–83Google Scholar
  48. Leenheer JA, Nanny MA, McIntyre C (2003) Terpenoids as major precursors of dissolved organic matter in landfill leachates, surface water, and groundwater. Environ Sci Technol 37(11):2323–2331CrossRefGoogle Scholar
  49. Ma H, Allen HE, Yin Y (2001) Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Res 35(4):985–996CrossRefGoogle Scholar
  50. Macko SA, Estep MLF (1984) Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter. Org Geochem 6:787–790CrossRefGoogle Scholar
  51. Maher KD, Bressler DC (2007) Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour Technol 98(12):2351–2368CrossRefGoogle Scholar
  52. Martin-Mousset B, Croué JP, Lefebvre E, Legube B (1997) Distribution et caractérisation de la matière organique dissoute d’eaux naturelles de surface. Water Res 31(3):541–553CrossRefGoogle Scholar
  53. McDonald S, Bishop AG, Prenzler PD, Robards K (2004) Analytical chemistry of freshwater humic substances. Anal Chim Acta 527(2):105–124CrossRefGoogle Scholar
  54. McKnight DM, Andrews ED, Spaulding SA, Aiken GR (1994) Aquatic fulvic-acids in algal-rich antarctic ponds. Limnol Oceanogr 39(8):1972–1979CrossRefGoogle Scholar
  55. Nakata H, Kannan K, Jones PD, Giesy JP (2005) Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. Chemosphere 58(6):759–766CrossRefGoogle Scholar
  56. Nam SN, Amy G (2008) Differentiation of wastewater effluent organic matter (EfOM) from natural organic matter (NOM) using multiple analytical techniques. Water Sci Technol 57(7):1009–1015CrossRefGoogle Scholar
  57. Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292(5518):917–920CrossRefGoogle Scholar
  58. Pernet-coudrier B, Clouzot L, Varrault G, Tusseau-vuillemin M-H, Verger A, Mouchel J-M (2008) Dissolved organic matter from treated effluent of a major wastewater treatment plant: characterization and influence on copper toxicity. Chemosphere 73(4):593–599CrossRefGoogle Scholar
  59. Peterson BJ, Howarth RW (1987) Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-march estuaries of Sapelo Island, Georgia. Limnol Oceanogr 32:1195–1213CrossRefGoogle Scholar
  60. Pettersson C, Rahm L (1996) Changes in molecular weight of humic substances in the Gulf of Bothnia. Environ Int 22(5):551–558CrossRefGoogle Scholar
  61. Pettersson C, Ephraim J, Allard B (1994) On the composition and properties of humic substances isolated from deep groundwater and surface waters. Org Geochem 21(5):443–451CrossRefGoogle Scholar
  62. Peuravuori J, Pihlaja K (1997) Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal Chim Acta 337(2):133–149CrossRefGoogle Scholar
  63. Peuravuori J, Ingman P, Pihlaja K, Koivikko R (2001) Comparisons of sorption of aquatic humic matter by DAX-8 and XAD-8 resins from solid-state 13C NMR spectroscopy’s point of view. Talanta 55(4):733–742CrossRefGoogle Scholar
  64. Peuravuori J, Lehtonen T, Pihlaja K (2002) Sorption of aquatic humic matter by DAX-8 and XAD-8 resins: comparative study using pyrolysis gas chromatography. Anal Chim Acta 471(2):219–226CrossRefGoogle Scholar
  65. Pouwels AD, Tom A, Eijkel GB, Boon JJ (1987) Characterisation of beech wood and its holocellulose and xylan fractions by pyrolysis-gas chromatography-mass spectrometry. J Anal Appl Pyrolysis 11:417–436CrossRefGoogle Scholar
  66. Robards K, McKelvie ID, Benson RL, Worsfold PJ, Blundell NJ, Casey H (1994) Determination of carbon, phosphorus, nitrogen and silicon species in waters. Anal Chim Acta 287(3):147–190CrossRefGoogle Scholar
  67. Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22(2):81–114CrossRefGoogle Scholar
  68. Saiz-Jimenez C, De Leeuw JW (1986) Lignin pyrolysis products: their structures and their significance as biomarkers. Org Geochem 10(4–6):869–876CrossRefGoogle Scholar
  69. Sarathy V, Allen HE (2005) Copper complexation by dissolved organic matter from surface water and wastewater effluent. Ecotoxicol Environ Saf 61:337–344CrossRefGoogle Scholar
  70. Schell DM, Barnett BA, Vinette KA (1998) Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Mar Ecol Prog Ser 162:11–23CrossRefGoogle Scholar
  71. Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG, Stainton MP (1997) Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36(1):9–28CrossRefGoogle Scholar
  72. Schnitzer MI, Monreal CM, Jandl G, Leinweber P, Fransham PB (2007) The conversion of chicken manure to biooil by fast pyrolysis II. Analysis of chicken manure, biooils, and char by curie-point pyrolysis-gas chromatography/mass spectrometry (Cp Py-GC/MS). J Environ Sci Health B 42(1):79–95CrossRefGoogle Scholar
  73. Sinninghe Damsté JS, Eglinton TI, de Leeuw JW (1992) Alkylpyrroles in a kerogen pyrolysate: evidence for abundant tetrapyrrole pigments. Geochim Cosmochim Acta 56(4):1743–1751CrossRefGoogle Scholar
  74. Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York, 496 ppGoogle Scholar
  75. Swietlik J, Sikorska E (2006) Characterization of natural organic matter fractions by high pressure size-exclusion chromatography, specific UV absorbance and total luminescence spectroscopy. Polish J Environ Stud 15(1):145–153Google Scholar
  76. Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Gerzabek MH (2007) An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ Chem Lett 5(1):9–12CrossRefGoogle Scholar
  77. Templetona AS, Chub K-H, Alvarez-Cohenb L, Conradd ME (2006) Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochim Cosmochim Acta 70(7):1739–1752CrossRefGoogle Scholar
  78. Thingstad TF (2003) Physiological models in the context of microbial food webs. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems. interactivity of dissolved organic matter. Academic Press, Burlington, pp 383–397Google Scholar
  79. Tsuge S, Matsubara H (1985) High-resolution pyrolysis-gas chromatography of proteins and related materials. J Anal Appl Pyrolysis 8:49–64CrossRefGoogle Scholar
  80. van Bergen PF, Collinson ME, De Leuw JW (1996) Anc Biomol 1:55–65Google Scholar
  81. Vartiainen T, Liimatainen A, Kauranen P (1987) The use of TSK size exclusion columns in determination of the quality and quantity of humus in raw waters and drinking waters. Sci Total Environ 62:75–84CrossRefGoogle Scholar
  82. Violleau D (1999).Intérêt du fractionnement et de l’extraction des matières organiques naturelles d’eaux de surface pour l’étude de leur propriétés structurales et de leur pouvoir complexant vis-à-vis du cuivre. Laboratoire de chimie de l’eau et de l’environnement, Université de Poitiers, 159 ppGoogle Scholar
  83. Voorhees KJ, DeLuca SJ, Noguerola A (1992) Identification of chemical biomarker compounds in bacteria and other biomaterials by pyrolysis—tandem mass spectrometry. J Anal Appl Pyrolysis 24(1):1–21CrossRefGoogle Scholar
  84. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37(20):4702–4708CrossRefGoogle Scholar
  85. Wiegner TN, Seitzinger SP (2001) Photochemical and microbial degradation of external dissolved organic matter inputs to rivers. Aquat Microb Ecol 24(1):27–40CrossRefGoogle Scholar
  86. Wilson MA, Philp RP, Gillam AH, Gilbert TD, Tate KR (1983) Comparison of the structures of humic substances from aquatic and terrestrial sources by pyrolysis gas chromatography–mass spectrometry. Geochim Cosmochim Acta 47(3):497–502CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • B. Pernet-Coudrier
    • 1
  • G. Varrault
    • 1
  • M. Saad
    • 1
  • J. P. Croue
    • 2
  • M.-F. Dignac
    • 3
  • J.-M. Mouchel
    • 4
  1. 1.LEESU, Université Paris-Est, UMR MA 102Créteil CedexFrance
  2. 2.LCME, UMR CNRS 6008, Université de PoitiersPoitiers CedexFrance
  3. 3.UMR Bioemco (Biogéochimie et Ecologie des Milieux continentaux), INRA, CNRS, UPMCThiverval-GrignonFrance
  4. 4.UMR Sisyphe, Université Pierre et Marie Curie—Paris 6Paris Cedex 05France

Personalised recommendations