, Volume 97, Issue 2–3, pp 211–229 | Cite as

An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes

  • E. Garcia-SolsonaEmail author
  • J. Garcia-Orellana
  • P. Masqué
  • E. Garcés
  • O. Radakovitch
  • A. Mayer
  • S. Estradé
  • G. Basterretxea


Short and long-lived radium isotopes (223Ra, 224Ra, 226Ra, 228Ra) were used to quantify submarine groundwater discharge (SGD) and its associated input of inorganic nitrogen (NO3 ), phosphorus (PO4 3−) and silica (SiO4 4−) into the karstic Alcalfar Cove, a coastal region of Minorca Island (Western Mediterranean Sea). Cove water, seawater and groundwater (wells and karstic springs) samples were collected in May 2005 and February 2006 for radium isotopes and in November 2007 for dissolved inorganic nutrients. Salinity profiles in cove waters suggested that SGD is derived from shallow brackish springs that formed a buoyant surface fresh layer of only 0.3 m depth. A binary mixing model that considers the distribution of radium activities was used to determine the cove water composition. Results showed that cove waters contained 20% brackish groundwater; of which 6% was recirculated seawater and 14% corresponded to freshwater discharge. Using a radium-derived residence time of 2.4 days, a total SGD flux of 150,000 m3 year−1 was calculated, consisting of 45,000 m3 year−1 recirculated seawater and 105,000 m3 year−1 fresh groundwater. Fresh SGD fluxes of NO3 , SiO4 4− and PO4 3− were estimated to be on the order of 18,000, 1,140 and 4 μmol m−2 day−1, respectively, and presumably sustain the high phytoplankton biomass observed in the cove during summer. The total amount of NO3 and SiO4 4− supplied by SGD was higher than the measured inventories in the cove, while the reverse was true for PO4 3−. These discrepancies are likely due to non-conservative biogeochemical processes that occur within the subterranean estuary and Alcalfar Cove waters.


Groundwater discharge Inorganic nutrients Karstic springs phytoplankton proliferations Radium isotopes 



We gratefully acknowledge F. Garcia-Olives, C. Hanfland, C. Sintes-Gomila, P. Monjo, and D. Sintes (Aigües de Sant Lluís) for their help and assistance during field work. The authors specially thank the Laboratori de Radioactivitat Ambiental staff for expert and fun collaboration. We also want to acknowledge R. Ventosa for her assistance with nutrient analyses. The authors are indebted to Claudia Benitez-Nelson for her valuable suggestions and her help in improving the manuscript. This project has been partially supported by the Institut Menorquí d’Estudis (IME) and the Departament d’Universitats, Recerca i Societat de la Informació of the Generalitat de Catalunya (PICS program no. 2434). Support from the Spanish Government and the Fulbright Commission for a post-doctoral fellowship to J.G.-O. (ref 2007-0516) is gratefully acknowledged. Support for the research of PM was received through the prize “ICREA Academia”, funded by the Generalitat de Catalunya.


  1. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4b):704–726CrossRefGoogle Scholar
  2. Barón A, Bayó A, Fayas J (1979) Relación modelo geológico-modelo hidrogeológico. Ejemplo: el acuífero mioceno de la isla de Menorca. Act. II Simposio Nacional Hidrogeología, vol 4. Pamplona, p 19Google Scholar
  3. Basterretxea G, Garcés E, Jordi A, Masó M, Tintoré J (2005) Breeze conditions as a favoring mechanism of Alexandrium taylori blooms at a Mediterranean beach. Estuar Coast Shelf Sci 62:1–12CrossRefGoogle Scholar
  4. Basterretxea G, Garcés E, Jordi A, Angles S, Masó M (2007) Modulation of nearshore harmful algal blooms by in situ growth rate and water renewal. Mar Ecol Prog Ser 352:53–65CrossRefGoogle Scholar
  5. Beck AJ, Rapaglia JP, Cochran JK, Bokuniewicz HJ (2007) Radium mass-balance in Jamaica Bay, NY: evidence for a substantial flux of submarine groundwater. Mar Chem 106:419–441CrossRefGoogle Scholar
  6. Bird FL, Ford PW, Hancock GJ (1999) Effect of burrowing macrobenthos on the flux of dissolved substances across the water-sediment interface. Mar Freshw Res 50:523–532CrossRefGoogle Scholar
  7. Bourrouilh R (1983) Stratigraphie, sediméntologie et tectonique de l’île de Minorque et du Nord-Est de Majorque (Baléares). La terminaison Nord-orientale des Cordillères Bétiques en Méditerranée occidentale. Memorias del Instituto Geológico y Minero de España 99:1–672Google Scholar
  8. Burnett WC, Dulaiova H (2003) Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J Environ Radioact 69:21–35CrossRefGoogle Scholar
  9. Burnett WC, Cowart JB, Deetae S (1990) Radium in the Suwannee River and estuary. Spring and river input to the Gulf of Mexico. Biogeochemistry 10:237–255CrossRefGoogle Scholar
  10. Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66:3–33CrossRefGoogle Scholar
  11. Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543CrossRefGoogle Scholar
  12. Cable JE, Corbett DR, Walsh MM (2002) Phosphate uptake in coastal limestone aquifers: a fresh look at wastewater management. Limnol Oceanogr Bull 11(2):29–32Google Scholar
  13. Capone DG, Bautista M (1985) A groundwater source of nitrate in nearshore marine sediments. Nature 313:214–216CrossRefGoogle Scholar
  14. Capone DG, Slater JM (1990) Interannual patterns of water-table height and groundwater derived nitrate in nearshore sediments. Biogeochemistry 10(3):277–288CrossRefGoogle Scholar
  15. Carreras D, Pons C, Canals A (2002) Cartografia digital de l’ocupació del territori de Menorca-2002. OBSAM-IME, Minorca.
  16. Charette MA, Allen MC (2006) Precision ground water sampling in coastal aquifers using a direct-push, shielded-screen well-point system. Ground Water Monit Remediat 26(2):87–93CrossRefGoogle Scholar
  17. Charette MA, Buesseler KO (2004) Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnol Oceanogr 49(2):376–385Google Scholar
  18. Charette MA, Scholten JC (2008) Marine chemistry special issue: the renaissance of radium isotopic tracers in marine processes studies. Mar Chem 109:185–187CrossRefGoogle Scholar
  19. Charette MA, Buesseler KO, Andrews JE (2001) Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnol Oceanogr 46:465–470Google Scholar
  20. Corbett DR, Dillon K, Burnett W, Chanton J (2000) Estimating the groundwater contribution into Florida Bay via natural tracers 222Rn and CH4. Limnol Oceanogr 45:1546–1557CrossRefGoogle Scholar
  21. Dahm CN, Grimm NB, Marmonier P, Valett HM, Vervier P (1998) Nutrient dynamics at the interface between surface waters and groundwaters. Freshw Biol 40:427–451CrossRefGoogle Scholar
  22. Estradé S (2005) Aportacions al coneixement del balanç hídric de l’aqüífer de migjorn de Menorca. OBSAM, Minorca.
  23. Fayas JA (1972) Estudio de los recursos hidráulicos totales de la isla de Menorca. Servicio Geológico de Obras Públicas I, MadridGoogle Scholar
  24. Fayas JA (1982) Estudio marco para el aprovechamiento de los recursos hidráulicos de Menorca. Consell Insular de Menorca, MinorcaGoogle Scholar
  25. Fornós JJ, Obrador A, Rosselló VM (2004) Història Natural del Migjorn de Menorca, vol 11. Societat d’Història Natural de les Balears, pp 1–378Google Scholar
  26. Fourqurean JW, Jones RD, Zieman JC (1993) Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions. Estuar Coast Shelf Sci 36:295–314CrossRefGoogle Scholar
  27. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood CliffsGoogle Scholar
  28. Garcia-Solsona E, Garcia-Orellana J, Masqué P, Dulaiova H (2008) Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC). Mar Chem 109:198–219CrossRefGoogle Scholar
  29. Garrison GH, Glenn CR, McMurtry GM (2003) Measurement of submarine groundwater discharge in Kahana Bay, O’ahu, Hawai‘i. Limnol Oceanogr 48(2):920–928Google Scholar
  30. Glibert PM, Burkholder JM, Graneli E, Anderson DM (2008) HABs and eutrophication. Harmful Algae 8(1):1–88CrossRefGoogle Scholar
  31. Grasshoff K, Ehrhardt M, Kremling K (1999) Methods of seawater analysis. Chapter 4: Determination of nutrients, 3rd edn. Verlag Chemie, WeinheimGoogle Scholar
  32. Hallegraeff G (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99Google Scholar
  33. Hwang DW, Kim G, Lee YW, Yang HS (2005) Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Mar Chem 96:61–71CrossRefGoogle Scholar
  34. Illoul H, Masó M, Reñé A, Anglès S (2007) Gymnodinium chlorophorum causante de proliferaciones de altas biomasas en aguas recreativas de las islas Baleares (veranos 2004-2006). IX Reunión Ibérica sobre Fitoplancton Tóxico y Biotoxinas, Cartagena, 7–10 May 2007Google Scholar
  35. Ivanovich M, Harmon RS (1992) Uranium series disequilibrium: applications to earth, marine and environmental sciences. Clarendon Press, OxfordGoogle Scholar
  36. Justic D, Rabalais NN, Turner RE (1995a) Stoichiometric nutrient balance and origin of coastal eutrophication. Mar Pollut Bull 30:41–46CrossRefGoogle Scholar
  37. Justic D, Rabalais NN, Turner RE, Dortch Q (1995b) Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuar Coast Shelf Sci 40:339–356CrossRefGoogle Scholar
  38. Krest JM, Moore WS, Rama (1999) 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya Rivers: indicators of groundwater input. Mar Chem 64:129–152CrossRefGoogle Scholar
  39. Kroeger KD, Swarzenski PW, Greenwood WJ, Reich C (2007) Submarine groundwater discharge to Tampa Bay: nutrient fluxes and biogeochemistry of the coastal aquifer. Mar Chem 104:85–97CrossRefGoogle Scholar
  40. LaMoreaux PE, LaMoreaux J (2007) Karst: the foundation for concepts in hydrogeology. Environ Geol 51:685–688. doi: 10.1007/s00254-006-0378-y CrossRefGoogle Scholar
  41. Laws EA (1983) Man’s impact on the marine nitrogen cycle. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, pp 459–485Google Scholar
  42. López-García JM (2004) El estado de las aguas subterráneas en el archipiélago Balear. Isla de Menorca, Instituto Geológico y Minero de Esoaña.
  43. Maramathas A, Pergialiotis P, Gialamas I (2006) Contribution to the identification of the sea intrusion mechanism of brackish karst springs. Hydrogeol J 14:657–662CrossRefGoogle Scholar
  44. Maso M, Garcés E (2006) Harmful microalgae blooms (HAB): problematic and conditions that induce them. Mar Pollut Bull 53(10–12):620–630CrossRefGoogle Scholar
  45. Masqué P, Sanchez-Cabeza JA, Bruach JM, Palacios E, Canals M (2002) Balance and residence times of 210Pb and 210Po in surface waters of the northwestern Mediterranean Sea. Cont Shelf Res 22:2127–2146CrossRefGoogle Scholar
  46. Moore WS (1976) Sampling 226Ra in the deep ocean. Deep Sea Res 23:647–651Google Scholar
  47. Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380:612–614CrossRefGoogle Scholar
  48. Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–126CrossRefGoogle Scholar
  49. Moore WS (2000) Ages of continental shelf waters determined from 223Ra and 224Ra. J Geophys Res 105:22117–22122CrossRefGoogle Scholar
  50. Moore WS (2005) The role of submarine groundwater discharge in coastal biogeochemistry. J Geochem Explor 88:389–393CrossRefGoogle Scholar
  51. Moore WS, Arnold R (1996) Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. J Geophys Res 101:1321–1329CrossRefGoogle Scholar
  52. Moore WS, Astwood H, Lindstrom C (1995) Radium isotopes in coastal waters on the Amazon shelf. Geochim Cosmochim Acta 59(20):4285–4298CrossRefGoogle Scholar
  53. Moore WS, Blanton JO, Joye SB (2006) Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. J Geophys Res 111:C09006. doi: 10.1029/2005JC003041 CrossRefGoogle Scholar
  54. Nixon SW (1995) Coastal eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–220Google Scholar
  55. Ollivier P, Claude C, Radakovitch O, Hamelin B (2008) TIMS measurements of 226Ra and 228Ra in the Gulf of Lion, an attempt to quantify submarine groundwater discharge. Mar Chem 109:337–354CrossRefGoogle Scholar
  56. Paytan A, Shellenbarger GG, Street JH, Gonneea ME, Davis K, Young MB, Moore WS (2006) Submarine groundwater discharge: an important source of new inorganic nitrogen to coral reef ecosystems. Limnol Oceanogr 51:343–348CrossRefGoogle Scholar
  57. Rabalais NN, Turner RE, Dortch Q, Justic D, Bierman VJ, Wiseman WJ (2002) Nutrient-enhanced productivity in the northern Gulf of Mexico: past, present and future. Hydrobiologia 475(476):39–63CrossRefGoogle Scholar
  58. Rama M, Moore WS (1996) Using the radium quartet for evaluating ground water input and water exchange in salt marshes. Geochim Cosmochim Acta 60(23):4645–4652CrossRefGoogle Scholar
  59. Schmidt S, Reyss JL (1996) Radium as internal tracer of Mediterranean Outflow Water. J Geophys Res 101:3589–3596CrossRefGoogle Scholar
  60. Slomp CP, Cappellen PV (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86CrossRefGoogle Scholar
  61. Smayda TJ (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42(5, part 2):1137–1153CrossRefGoogle Scholar
  62. Street JH, Knee KL, Grossman EE, Paytan A (2008) Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai’i. Mar Chem 109:355–376CrossRefGoogle Scholar
  63. Sturchio NC, Banner JL, Binz CM, Heraty LB, Musgrove M (2001) Radium geochemistry of ground waters in Paleozoic carbonate aquifers, midcontinent, USA. Appl Geochem 16:109–122CrossRefGoogle Scholar
  64. Sun Y, Torgersen T (1998) The effects of water content and Mn-fiber surface conditions on 224Ra measurement by 220Rn emanation. Mar Chem 62:299–306CrossRefGoogle Scholar
  65. Tapia González FU, Herrera-Silveira JA, Aguirre-Macedo ML (2008) Water quality variability and eutrophic trends in karstic tropical coastal lagoons of the Yucatán Peninsula. Estuar Coast Shelf Sci 76:418–430CrossRefGoogle Scholar
  66. Trilla J (1979) Hidrogeologia. Enciclopedia de Menorca, vol I, Ed Obra cultural Menorca, Maó, pp 239–264Google Scholar
  67. UNESCO (2004) Submarine groundwater discharge. Management implications, measurements and effects. IHP-VI, Series on groundwater 5. IOC manuals and guides 44. ISBN 92-9220-006-2Google Scholar
  68. Von Gunten HR, Surbeck H, Rossler E (1996) Uranium series disequilibrium and high thorium and radium enrichments in karst formations. Environ Sci Technol 30:1268–1274CrossRefGoogle Scholar
  69. Weiskei PK, Howes BL (1992) Differential transport of sewage-derived nitrogen and phosphorus through a coastal watershed. Environ Sci Technol 26:352–360CrossRefGoogle Scholar
  70. Zanini L, Robertson WD, Ptacek CJ, Schiff SL, Mayer T (1998) Phosphorus characterization in sediments impacted by septic effluent at four sites in central Canada. J Contam Hydrol 33(3–4):405–429CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • E. Garcia-Solsona
    • 1
    Email author
  • J. Garcia-Orellana
    • 1
    • 2
  • P. Masqué
    • 1
  • E. Garcés
    • 3
  • O. Radakovitch
    • 4
  • A. Mayer
    • 4
  • S. Estradé
    • 5
  • G. Basterretxea
    • 6
  1. 1.Departament de Física, Institut de Ciència i Tecnologia Ambientals (ICTA)Universitat Autònoma de BarcelonaCerdanyola del VallesSpain
  2. 2.School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookUSA
  3. 3.Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar-CMIMACSICBarcelonaSpain
  4. 4.CEREGE-Université Paul Cézanne Aix Marseille IIIAix en ProvenceFrance
  5. 5.Institut Menorquí d’Estudis (IME-OBSAM)Mahon, MinorcaSpain
  6. 6.Institut Mediterrani d’Estudis Avançats (IMEDEA), Consell Superior d’Investigacions Cientifigues (CSIC-UIB)Esporles, MajorcaSpain

Personalised recommendations