Biogeochemistry

, Volume 96, Issue 1–3, pp 209–231 | Cite as

Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization

  • Phillip Sollins
  • Marc G. Kramer
  • Christopher Swanston
  • Kate Lajtha
  • Timothy Filley
  • Anthony K. Aufdenkampe
  • Rota Wagai
  • Richard D. Bowden
Article

Abstract

Sequential density fractionation separated soil particles into “light” predominantly mineral-free organic matter vs. increasingly “heavy” organo-mineral particles in four soils of widely differing mineralogy. With increasing particle density C concentration decreased, implying that the soil organic matter (OM) accumulations were thinner. With thinner accumulations we saw evidence for both an increase in 14C-based mean residence time (MRT) of the OM and a shift from plant to microbial origin.Evidence for the latter included: (1) a decrease in C/N, (2) a decrease in lignin phenols and an increase in their oxidation state, and (3) an increase in δ13C and δ15N. Although bulk-soil OM levels varied substantially across the four soils, trends in OM composition and MRT across the density fractions were similar. In the intermediate density fractions (~1.8–2.6 g cm−3), most of the reactive sites available for interaction with organic molecules were provided by aluminosilicate clays, and OM characteristics were consistent with a layered mode of OM accumulation. With increasing density (lower OM loading) within this range, OM showed evidence of an increasingly microbial origin. We hypothesize that this microbially derived OM was young at the time of attachment to the mineral surfaces but that it persisted due to both binding with mineral surfaces and protection beneath layers of younger, less microbially processed C. As a result of these processes, the OM increased in MRT, oxidation state, and degree of microbial processing in the sequentially denser intermediate fractions. Thus mineral surface chemistry is assumed to play little role in determining OM composition in these intermediate fractions. As the separation density was increased beyond ~2.6 g cm−3, mineralogy shifted markedly: aluminosilicate clays gave way first to light primary minerals including quartz, then at even higher densities to various Fe-bearing primary minerals. Correspondingly, we observed a marked drop in δ15N, a weaker decrease in extent of microbial processing of lignin phenols, and some evidence of a rise in C/N ratio. At the same time, however, 14C-based MRT time continued its increase. The increase in MRT, despite decreases in degree of microbial alteration, suggests that mineral surface composition (especially Fe concentration) plays a strong role in determining OM composition across these two densest fractions.

Keywords

151314Lignin phenol Primary mineral Protein 

References

  1. Amelung W, Zhang X, Flach KW (2006) Amino acids in grassland soils: climatic effects on concentrations and chirality. Geoderma 130:207–217. doi:10.1016/j.geoderma.2005.01.017 CrossRefGoogle Scholar
  2. Arnarson TS, Keil RG (2001) Organic–mineral interactions in marine sediments studied using density fractionation and X-ray photoelectron spectroscopy. Org Geochem 32:1401–1415. doi:10.1016/S0146-6380(01)00114-0 CrossRefGoogle Scholar
  3. Baisden WT, Amundson R, Cook AC, Brenner DL (2002) Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochem Cycles 16:64–116Google Scholar
  4. Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710. doi:10.1016/S0146-6380(00)00049-8 CrossRefGoogle Scholar
  5. Basile-Doelsch I, Amundson R, Stone WE, Borschneck D, Bottero JY, Moustier S, Masin F, Colin F (2007) Mineral control of carbon pools in a volcanic soil horizon. Geoderma 137:477–489. doi:10.1016/j.geoderma.2006.10.006 CrossRefGoogle Scholar
  6. Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248. doi:10.1038/nature04038 CrossRefGoogle Scholar
  7. Blakemore LC, Searle PL, Daly BK (1987) Methods for chemical analysis of soils. NZ Soil Bur Sci Rep 80, Wellington, NZGoogle Scholar
  8. Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98. doi:10.1007/s00442-007-0700-8 CrossRefGoogle Scholar
  9. Bracewell JM, Campbell AS, Mitchell BD (1970) An assessment of some thermal and chemical techniques used in the study of the poorly-ordered aluminosilicates in soil clays. Clay Miner 8:325–335. doi:10.1180/claymin.1970.008.3.10 CrossRefGoogle Scholar
  10. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi:10.1021/ja01269a023 CrossRefGoogle Scholar
  11. Castanha C, Trumbore S, Amundson R (2008) Methods of separating soil carbon pools affect the chemistry and turnover time of isolated fractions. Radiocarbon 50:83–97Google Scholar
  12. Chapin FSIII, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, NYGoogle Scholar
  13. Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–2330CrossRefGoogle Scholar
  14. Compton JE, Boone RD (2002) Soil nitrogen transformations and the role of light fraction organic matter in forest soils. Soil Biol Biochem 34:933–943. doi:10.1016/S0038-0717(02)00025-1 CrossRefGoogle Scholar
  15. Crow SE, Swanston CW, Lajtha K, Brooks JR, Keirstead H (2007) Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem. Biogeochemistry 85:69–90. doi:10.1007/s10533-007-9100-8 CrossRefGoogle Scholar
  16. Dalal RC, Henry RJ (1988) Cultivation effects on carbohydrate contents of soil and soil fractions. Soil Sci Soc Am J 52:1361–1365Google Scholar
  17. Dalal RC, Mayer RJ (1986) Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. IV. Loss of organic carbon for different density functions. Aust J Soil Res 24:301–309. doi:10.1071/SR9860301 CrossRefGoogle Scholar
  18. Dijkstra P, Ishizu A, Doucett R, Hart SC, Schwartz E, Menyailo OV, Hungate BA (2006) 13C and 15N natural abundance of the soil microbial biomass. Soil Biol Biochem 38:3257–3266. doi:10.1016/j.soilbio.2006.04.005 CrossRefGoogle Scholar
  19. Emmerton KS, Callaghan TV, Jones HE, Leake JR, Michelsen A, Read DJ (2001) Assimilation and isotopic fractionation of nitrogen by mycorrhizal fungi. New Phytol 151:503–511. doi:10.1046/j.1469-8137.2001.00178.x CrossRefGoogle Scholar
  20. Essington ME (2003) Soil and water chemistry. CRC Press, Boca RatonGoogle Scholar
  21. Eusterhues K, Rumpel C, Kögel-Knabner I (2005) Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. Eur J Soil Sci 56:753–763Google Scholar
  22. Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280. doi:10.1038/nature06275 CrossRefGoogle Scholar
  23. Golchin A, Oades JM, Skjemstad JO, Clarke P (1994) Study of free and occluded particulate organic matter in soils by solid-state C-13 CP/MAS NMR spectroscopy and scanning electron microscopy. Aust J Soil Res 32:285–309. doi:10.1071/SR9940285 CrossRefGoogle Scholar
  24. Goñi MA, Hedges JI (1990) Potential applications of cutin-derived CuO reaction products for discriminating vascular plant sources in natural environments. Geochim Cosmochim Acta 54:3073–3081. doi:10.1016/0016-7037(90)90123-3 CrossRefGoogle Scholar
  25. Grandy AS, Robertson GP (2006) Aggregation and organic matter protection after tillage of a previously uncultivated soil. Soil Sci Soc Am J 70:1398–1406. doi:10.2136/sssaj2005.0313 CrossRefGoogle Scholar
  26. Grandy AS, Robertson GP (2007) Land-use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems (N Y, Print) 10:58–73. doi:10.1007/s10021-006-9010-y CrossRefGoogle Scholar
  27. Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296. doi:10.1038/nature06592 CrossRefGoogle Scholar
  28. Hedges JI, Mann DC (1979) The characterization of plant tissues by their lignin oxidation products. Geochim Cosmochim Acta 43:1803–1807. doi:10.1016/0016-7037(79)90028-0 CrossRefGoogle Scholar
  29. Hedges JI, Clark WA, Cowie GL (1988) Organic matter sources to the water column and surficial sediments of a marine bay. Limnol Oceanogr 33:1116–1136CrossRefGoogle Scholar
  30. Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126. doi:10.1046/j.1469-8137.2003.00657.x CrossRefGoogle Scholar
  31. Holmgren G (1967) A rapid citrate-dithionite extractable iron procedure. Soil Sci Soc Am J 31:210–211Google Scholar
  32. Hua Q, Barbetti M (2004) Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46:1273–1298Google Scholar
  33. Kaiser K, Guggenberger G (2003) Mineral surfaces and soil organic matter. Eur J Soil Sci 54:1–18. doi:10.1046/j.1365-2389.2003.00544.x CrossRefGoogle Scholar
  34. Kaiser K, Guggenberger G (2007) Distribution of hydrous aluminium and iron over density fractions depends on organic matter load and ultrasonic dispersion. Geoderma 140:140–146. doi:10.1016/j.geoderma.2007.03.018 CrossRefGoogle Scholar
  35. Keil RG, Mayer LM, Quay PD, Richey JE, Hedges JI (1997) Loss of organic matter from riverine particles in deltas. Geochim Cosmochim Acta 61:1507–1511. doi:10.1016/S0016-7037(97)00044-6 CrossRefGoogle Scholar
  36. Kemmit SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird N, O’Donnell AG, Brookes PC (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol Biochem 40:61–73. doi:10.1016/j.soilbio.2007.06.021 CrossRefGoogle Scholar
  37. Kitayama K, Majalap-Lee N, Aiba S-I (2000) Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo. Oecologia 123:342–349. doi:10.1007/s004420051020 CrossRefGoogle Scholar
  38. Kleber M, Mikutta AR, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci 56:717–725Google Scholar
  39. Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into multilayered structures on mineral surfaces. Biogeochemistry 85:9–24. doi:10.1007/s10533-007-9103-5 CrossRefGoogle Scholar
  40. Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler K, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82. doi:10.1002/jpln.200700048 CrossRefGoogle Scholar
  41. Kramer MG, Sollins P, Sletten R, Swart PK (2003) N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84:2021–2025. doi:10.1890/02-3097 CrossRefGoogle Scholar
  42. Kramer MG, Sollins P, Sletten R (2004) Soil carbon dynamics across a windthrow disturbance sequence in a montane temperate rainforest, southeast Alaska. Ecology 85:2230–2240. doi:10.1890/02-4098 CrossRefGoogle Scholar
  43. Kramer MG, Lajtha K, Thomas G, Sollins P (2009) Contamination effects on soil density fractions from high N or C content sodium polytungstate. Biogeochemistry 92:177–181. doi:10.1007/s10533-008-9268-6 CrossRefGoogle Scholar
  44. Lajtha K, Crow S, Yano Y, Kaushal S, Sulzman E, Sollins P, Spears J (2005) Detrital controls on soil solution N and dissolved organic matter in soils: a field experiment. Biogeochemistry 76:261–281. doi:10.1007/s10533-005-5071-9 CrossRefGoogle Scholar
  45. Leifeld J, Fuhrer J (2005) The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry 75:433–453. doi:10.1007/s10533-005-2237-4 CrossRefGoogle Scholar
  46. Marín-Spiotta E, Swanston CW, Torn MS, Silver WL, Burton SD (2008) Chemical and mineral control of soil carbon turnover in abandoned tropical pastures. Geoderma 143:49–62. doi:10.1016/j.geoderma.2007.10.001 CrossRefGoogle Scholar
  47. Mayer LM (1999) Extent of coverage of mineral surfaces by organic matter in marine sediments. Geochim Cosmochim Acta 63:207–215. doi:10.1016/S0016-7037(99)00028-9 CrossRefGoogle Scholar
  48. Mayer LM, Xing B (2001) Organic matter-surface area relationships in acid soils. Soil Sci Soc Am J 65:250–258Google Scholar
  49. Medina E, Cuevas E, Figueroa J, Lugo AE (1994) Mineral content of leaves from trees growing on serpentine soils under contrasting rainfall regimes in Puerto Rico. Plant Soil 158:13–21CrossRefGoogle Scholar
  50. Oades JM (1989) An introduction to organic matter in mineral soils. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Science Society of America, Madison, pp 89–159Google Scholar
  51. Opsahl S, Benner R (1995) Early diagenesis of vascular plant tissues; lignin and cutin decomposition and biogeochemical implications. Geochim Cosmochim Acta 59:4889–4904. doi:10.1016/0016-7037(95)00348-7 CrossRefGoogle Scholar
  52. Perrott KW, Smith B, Inkson R (1976) The reaction of fluoride with soils and soil minerals. Eur J Soil Sci 27:58–67. doi:10.1111/j.1365-2389.1976.tb01975.x CrossRefGoogle Scholar
  53. Preger AC, Rillig MC, Johns AR, Du Preez CC, Lobed I, Amelung W (2007) Losses of glomalin-related soil protein under prolonged arable cropping: a chronosequence study in sandy soils of the South African Highveld. Soil Biol Biochem 39:445–453. doi:10.1016/j.soilbio.2006.08.014 CrossRefGoogle Scholar
  54. Prior CA, Baisden WT, Bruhn F, Neff JC (2007) Using a soil chronosequence to identify soil fractions for understanding and modeling soil carbon dynamics in New Zealand. Radiocarbon 49:1093–1102Google Scholar
  55. Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM (2006) Temperature influences carbon accumulation in moist tropical forests. Ecology 87:76–87. doi:10.1890/05-0023 CrossRefGoogle Scholar
  56. Rasmussen C, Matsuyama N, Dahlgren RA, Southard RJ, Brauer N (2007) Soil genesis and mineral transformation across an environmental gradient on andesitic lahars. Soil Sci Soc Am J 71:225–237CrossRefGoogle Scholar
  57. Rillig M, Caldwell B, Wösten H, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry 85:25–44. doi:10.1007/s10533-007-9102-6 CrossRefGoogle Scholar
  58. Siregar A, Kleber M, Mikutta R, Jahn R (2005) Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. Eur J Soil Sci 56:481–490. doi:10.1111/j.1365-2389.2004.00680.x CrossRefGoogle Scholar
  59. Sollins P, Swanston C, Kleber M, Filley T, Kramer M, Crow S, Caldwell B, Lajtha K, Bowden R (2006) Organic C and N stabilization in a forest soil: evidence from sequential density fractionation. Soil Biol Biochem 38:3313–3324. doi:10.1016/j.soilbio.2006.04.014 CrossRefGoogle Scholar
  60. Sollins P, Swanston C, Kramer M (2007) Stabilization and destabilization of soil organic matter—a new focus. Biogeochemistry 85:1–7. doi:10.1007/s10533-007-9099-x CrossRefGoogle Scholar
  61. Spielvogel S, Prietzel J, Kögel-Knabner K (2008) Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific. Eur J Soil Sci 59:674–692. doi:10.1111/j.1365-2389.2008.01030.x CrossRefGoogle Scholar
  62. Stuiver M, Polach HA (1977) Reporting of C-14 data. Radiocarbon 19:355–363Google Scholar
  63. Swanston CW, Torn MS, Hanson PJ, Southon JR, Garten CT, Hanlon EM, Ganio L (2005) Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment. Geoderma 128:52–62. doi:10.1016/j.geoderma.2004.12.015 CrossRefGoogle Scholar
  64. Tate KR, Theng B (1980) Organic matter and its interactions with inorganic soil constituents. In: Theng B (ed) Soils with variable charge. Soil Bureau, Lower Hutt, pp 225–249Google Scholar
  65. Taylor A, Fransson PM, Högberg P, Högberg MN, Plamboeck AH (2003) Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytol 159:757–774. doi:10.1046/j.1469-8137.2003.00838.x CrossRefGoogle Scholar
  66. Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173. doi:10.1038/38260 CrossRefGoogle Scholar
  67. Torn MS, Lapenis AG, Timofeev A, Fischer ML, Babikov BV, Harden JW (2002) Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe. Glob Change Biol 8:941–953. doi:10.1046/j.1365-2486.2002.00477.x CrossRefGoogle Scholar
  68. Torn MS, Vitousek PM, Trumbore SE (2005) The influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling. Ecosystems (N Y, Print) 8:352–372. doi:10.1007/s10021-004-0259-8 CrossRefGoogle Scholar
  69. Trumbore SE (1993) Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochem Cycles 7:275–290. doi:10.1029/93GB00468 CrossRefGoogle Scholar
  70. Turchenek LW, Oades JM (1979) Fractionation of organomineral complexes by sedimentation and density techniques. Geoderma 21:311–343. doi:10.1016/0016-7061(79)90005-3 CrossRefGoogle Scholar
  71. Wagai R, Mayer LM (2007) Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim Cosmochim Acta 71:25–35. doi:10.1016/j.gca.2006.08.047 CrossRefGoogle Scholar
  72. Wagai R, Mayer LM, Kitayama K, Knicker H (2009) Climate and parent material controls on organic matter storage in surface soils: a three-pool, density separation approach. GeodermaGoogle Scholar
  73. Wallander H, Göransson H, Rosengren U (2004) Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139:89–97. doi:10.1007/s00442-003-1477-z CrossRefGoogle Scholar
  74. Young JL, Spycher G (1979) Water dispersible soil organic-mineral particles. Soil Sci Soc Am J 43:324–328CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Phillip Sollins
    • 1
  • Marc G. Kramer
    • 2
  • Christopher Swanston
    • 3
  • Kate Lajtha
    • 4
  • Timothy Filley
    • 5
  • Anthony K. Aufdenkampe
    • 6
  • Rota Wagai
    • 7
  • Richard D. Bowden
    • 8
  1. 1.Forest Science DepartmentOregon State UniversityCorvallisUSA
  2. 2.Department of Earth and Planetary SciencesUniversity of California Santa CruzSanta CruzUSA
  3. 3.US Forest Service Northern Research StationHoughtonUSA
  4. 4.Department of Botany & Plant PathologyOregon State UniversityCorvallisUSA
  5. 5.Department of Earth & Atmospheric SciencesPurdue UniversityWest LafayetteUSA
  6. 6.Stroud Water Research CenterAvondaleUSA
  7. 7.National Institute for Environmental StudiesTsukubaJapan
  8. 8.Allegheny CollegeMeadvilleUSA

Personalised recommendations