Advertisement

Biogeochemistry

, Volume 95, Issue 2–3, pp 243–260 | Cite as

Longitudinal distribution of nitrate δ15N and δ18O in two contrasting tropical rivers: implications for instream nitrogen cycling

  • Toshihiro Miyajima
  • Chikage Yoshimizu
  • Yoshie Tsuboi
  • Yoshiyuki Tanaka
  • Ichiro Tayasu
  • Toshi Nagata
  • Isao Koike
Article

Abstract

The longitudinal variations in the nitrogen (δ15N) and oxygen (δ18O) isotopic compositions of nitrate (NO3 ), the carbon isotopic composition (δ13C) of dissolved inorganic carbon (DIC) and the δ13C and δ15N of particulate organic matter were determined in two Southeast Asian rivers contrasting in the watershed geology and land use to understand internal nitrogen cycling processes. The \( \delta^{15} {\text{N}}_{{{\text{NO}}_{3} }} \) became higher longitudinally in the freshwater reach of both rivers. The \( \delta^{18} {\text{O}}_{{{\text{NO}}_{3} }} \) also increased longitudinally in the river with a relatively steeper longitudinal gradient and a less cultivated watershed, while the \( \delta^{18} {\text{O}}_{{{\text{NO}}_{3} }} \) gradually decreased in the other river. A simple model for the \( \delta^{15} {\text{N}}_{{{\text{NO}}_{3} }} \) and the \( \delta^{18} {\text{O}}_{{{\text{NO}}_{3} }} \) that accounts for simultaneous input and removal of NO3 suggested that the dynamics of NO3 in the former river were controlled by the internal production by nitrification and the removal by denitrification, whereas that in the latter river was significantly affected by the anthropogenic NO3 loading in addition to the denitrification and/or assimilation. In the freshwater-brackish transition zone, heterotrophic activities in the river water were apparently elevated as indicated by minimal dissolved oxygen, minimal δ13CDIC and maximal pCO2. The δ15N of suspended particulate nitrogen (PN) varied in parallel to the \( \delta^{15} {\text{N}}_{{{\text{NO}}_{3} }} \) there, suggesting that the biochemical recycling processes (remineralization of PN coupled to nitrification, and assimilation of NO3 -N back to PN) played dominant roles in the instream nitrogen transformation. In the brackish zone of both rivers, the \( \delta^{15} {\text{N}}_{{{\text{NO}}_{3} }} \) displayed a declining trend while the \( \delta^{18} {\text{O}}_{{{\text{NO}}_{3} }} \) increased sharply. The redox cycling of NO3 /NO2 and/or deposition of atmospheric nitrogen oxides may have been the major controlling factor for the estuarine \( \delta^{15} {\text{N}}_{{{\text{NO}}_{3} }} \) and \( \delta^{18} {\text{O}}_{{{\text{NO}}_{3} }} \), however, the exact mechanism behind the observed trends is currently unresolved.

Keywords

Anthropogenic nitrogen loading Denitrification Estuary Nitrate Nitrification Tropical river 

Notes

Acknowledgments

This study was supported by the CREST (Core Research for Evolutional Science and Technology) program of Japan Science and Technology Agency, and Grant-in-Aid for Oversea Scientific Research (B) No.16405007 and Grant-in-Aid for Scientific Research (C) No.17510004 from Japan Society for the Promotion of Science. Ranong Coastal Resource Research Station of Kasetsart University and Had-Chao-Mai National Park Education Center kindly provided us with laboratory facilities. The authors gratefully acknowledge M. Nakaoka, C. Aryuthaka, Y. Monthum and T. Srisombat for management of field survey, and S. Pleum-arom, C. Jantharakhantee, T. Niyomsilpchai and N. Thongsin for assistance of field works. The authors were also benefitted by helpful discussion with K. Koba, N. Ohte, N. Ohkouchi, H. Ogawa and M. Tsutsumi on the results and implications of this study, and constructive comments by two anonymous reviewers for the earlier versions of the manuscript.

References

  1. Bedard-Haughn A, van Groenigen JW, van Kassel C (2003) Tracing 15N through landscapes: potential uses and precautions. J Hydrol (Amst) 272:175–190. doi: 10.1016/S0022-1694(02)00263-9 CrossRefGoogle Scholar
  2. Bell PRF (1992) Eutrophication and coral reefs—some examples in the great barrier reef lagoon. Water Res 26:553–568. doi: 10.1016/0043-1354(92)90228-V CrossRefGoogle Scholar
  3. Bernhardt ES, Likens GE, Buso DC, Driscoll CT (2003) In-stream uptake dampens effects of major forest disturbance on watershed nitrogen export. Proc Natl Acad Sci USA 100:10304–10308. doi: 10.1073/pnas.1233676100 CrossRefGoogle Scholar
  4. Böhlke JK, Mroczkowski SJ, Coplen TB (2003) Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration. Rapid Commun Mass Spectrom 17:1835–1846. doi: 10.1002/rcm.1123 CrossRefGoogle Scholar
  5. Bouillon S, Connolly RM, Lee SY (2008) Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies. J Sea Res 59:44–58. doi: 10.1016/j.seares.2007.05.001 CrossRefGoogle Scholar
  6. Brodie J, Fabricius K, De’ath G, Okaji K (2005) Are increased nutrient inputs responsible for more outbreaks of crown-of-thorns starfish? An appraisal of the evidence. Mar Pollut Bull 51:266–278. doi: 10.1016/j.marpolbul.2004.10.035 CrossRefGoogle Scholar
  7. Cai W-J, Wiebe WJ, Wang Y, Sheldon JE (2000) Intertidal marsh as a source of dissolved inorganic carbon and sink of nitrate in the Satilla river-estuarine complex in the southeastern U.S. Limnol Oceanogr 45:1743–1752Google Scholar
  8. Cai W-J, Wang Z-A, Wang Y (2003) The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land-sea interface and the ocean. Geophys Res Lett 30:1849. doi: 10.1029/2003GL017633 CrossRefGoogle Scholar
  9. Casciotti KL, Sigman DM, Hastings MG, Böhlke JK, Hilkert A (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912. doi: 10.1021/ac020113w CrossRefGoogle Scholar
  10. Casciotti KL, Sigman DM, Ward BB (2003) Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiol J 20:335–353. doi: 10.1080/01490450303895 CrossRefGoogle Scholar
  11. Casciotti KL, Böhlke JK, McIlvin MR, Mroczkowski SJ, Hannon JE (2007) Oxygen isotopes in nitrite: analysis, calibration, and equilibration. Anal Chem 79:2427–2436. doi: 10.1021/ac061598h CrossRefGoogle Scholar
  12. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca RatonGoogle Scholar
  13. Das A, Krishnaswami S, Bhattacharya SK (2005) Carbon isotope ratio of dissolved inorganic carbon (DIC) in rivers draining the Deccan Traps, India: sources of DIC and their magnitudes. Earth Planet Sci Lett 236:419–429. doi: 10.1016/j.epsl.2005.05.009 CrossRefGoogle Scholar
  14. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi: 10.1126/science.1156401 CrossRefGoogle Scholar
  15. Dijkstra P, LaViolette CM, Coyle JS, Doucett RR, Schwartz E, Hart SC, Hungate BA (2008) 15N enrichment as an integrator of the effects of C and N on microbial metabolism and ecosystem function. Ecol Lett 11:389–397. doi: 10.1111/j.1461-0248.2008.01154.x CrossRefGoogle Scholar
  16. Ensign SA, Doyle MW (2006) Nutrient spiraling in streams and river networks. J Geophys Res 111:G04009. doi: 10.1029/2005JG000114 CrossRefGoogle Scholar
  17. Fenton GE, Ritz DA (1988) Changes in carbon and hydrogen stable isotope ratios of macroalgae and seagrass during decomposition. Estuar Coast Shelf Sci 26:429–436. doi: 10.1016/0272-7714(88)90023-6 CrossRefGoogle Scholar
  18. Finlay JC, Kendall C (2007) Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Malden, pp 283–333CrossRefGoogle Scholar
  19. Fisher SG, Sponseller RA, Heffernan JB (2004) Horizons in stream biogeochemistry: flowpaths to progress. Ecology 85:2369–2379. doi: 10.1890/03-0244 CrossRefGoogle Scholar
  20. Frankignoulle M, Abril G, Borges AV, Bourge I, Canon C, Delille B, Libert E, Théate J-M (1998) Carbon dioxide emission from European estuaries. Science 282:434–436. doi: 10.1126/science.282.5388.434 CrossRefGoogle Scholar
  21. Granger J, Sigman DM, Needoba JA, Harrison PJ (2004) Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnol Oceanogr 49:1763–1773Google Scholar
  22. Granger J, Sigman DM, Prokopenko MG, Lehmann MF, Tortell PD (2006) A method for nitrite removal in nitrate N and O isotope analyses. Limnol Oceanogr Methods 4:205–212Google Scholar
  23. Grimaldi C, Chaplot V (2000) Nitrate depletion during within-stream transport: effects of exchange processes between stream water, the hyporheic and riparian zones. Water Air Soil Pollut 124:95–112. doi: 10.1023/A:1005222513626 CrossRefGoogle Scholar
  24. Holmer M (2003) Mangroves of Southeast Asia. In: Black KD, Shimmield GB (eds) Biogeochemistry of marine systems. Blackwell, Oxford, pp 1–39Google Scholar
  25. Jennerjahn TC, Ittekkot V, Klöpper S, Adi S, Nugroho SP, Sudiana N, Yusmal A, Prihartanto, Gaye-Haake B (2004) Biogeochemistry of a tropical river affected by human activities in its catchment: Brantas river estuary and coastal waters of Madura Strait, Java, Indonesia. Estuar Coast Shelf Sci 60:503–514. doi: 10.1016/j.ecss.2004.02.008
  26. Kendall C, Mast MA, Rice KC (1995) Tracing watershed weathering reactions with δ13C. In: Kharaka YK, Chudaev OV (eds) Water-rock interaction. Balkema, Rotterdam, pp 569–572Google Scholar
  27. Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Malden, pp 375–449CrossRefGoogle Scholar
  28. Kool DM, Wrage N, Oenema O, Dolfing J, Van Groenigen JW (2007) Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO3–and N2O: a review. Rapid Commun Mass Spectrom 21:3569–3578. doi: 10.1002/rcm.3249 CrossRefGoogle Scholar
  29. Lapointe BE, Clark MW (1992) Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 15:465–476. doi: 10.2307/1352391 CrossRefGoogle Scholar
  30. Lapointe BE, Barile PJ, Matzie WR (2004) Anthropogenic nutrient enrichment of seagrass and coral reef communities in the lower Florida Keys: discrimination of local versus regional nitrogen sources. J Exp Mar Biol Ecol 308:23–58. doi: 10.1016/j.jembe.2004.01.019 CrossRefGoogle Scholar
  31. Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66:3573–3584. doi: 10.1016/S0016-7037(02)00968-7 CrossRefGoogle Scholar
  32. Lehmann MF, Reichert P, Bernasconi SM, Barbieri A, McKenzie JA (2003) Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone. Geochim Cosmochim Acta 67:2529–2542. doi: 10.1016/S0016-7037(03)00085-1 CrossRefGoogle Scholar
  33. Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principle; illustration for the denitrification and nitrification processes. Plant Soil 62:413–430. doi: 10.1007/BF02374138 CrossRefGoogle Scholar
  34. McClelland JW, Valiela I (1998) Linking nitrogen in estuarine producers to land-derived sources. Limnol Oceanogr 43:577–585Google Scholar
  35. McCook LJ, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417. doi: 10.1007/s003380000129 CrossRefGoogle Scholar
  36. Millero FJ, Graham TB, Huang F, Bustos-Serrano H, Pierrot D (2006) Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar Chem 100:80–94. doi: 10.1016/j.marchem.2005.12.001 CrossRefGoogle Scholar
  37. Miyajima T, Yamada Y, Hanba YT, Yoshii K, Koitabashi T, Wada E (1995) Determining the stable isotope ratio of total dissolved inorganic carbon in lake water by GC/C/IRMS. Limnol Oceanogr 40:994–1000CrossRefGoogle Scholar
  38. Miyajima T, Tsuboi Y, Tanaka Y, Koike I (2009) Export of inorganic carbon from two Southeast Asian mangrove forests to adjacent estuaries as estimated by the stable isotope composition of dissolved inorganic carbon. J Geophys Res 114:G01024. doi: 10.1029/2008JG000861 CrossRefGoogle Scholar
  39. Montoya JP, McCarthy JJ (1995) Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J Plankton Res 17:439–464. doi: 10.1093/plankt/17.3.439 CrossRefGoogle Scholar
  40. Mulholland PJ (1992) Regulation of nutrient concentrations in a temperate forest stream: roles of upland, riparian, and instream processes. Limnol Oceanogr 37:1512–1526Google Scholar
  41. Needoba JA, Waser NA, Harrison PJ, Calvert SE (2003) Nitrogen isotope fractionation in 12 species of marine phytoplankton during growth on nitrate. Mar Ecol Prog Ser 255:81–91. doi: 10.3354/meps255081 CrossRefGoogle Scholar
  42. Neubauer SC, Anderson IC (2003) Transport of dissolved inorganic carbon from a tidal freshwater marsh to the York river estuary. Limnol Oceanogr 48:299–307Google Scholar
  43. Pawellek F, Veizer J (1994) Carbon cycle in the upper Danube and its tributaries: δ13C-DIC constraints. Isr J Earth Sci 43:187–194Google Scholar
  44. Ruehl CR, Fisher AT, Huertos ML, Wankel SD, Wheat CG, Kendall C, Hatch CE, Shennan C (2007) Nitrate dynamics within the Pajaro river, a nutrient-rich, losing stream. J N Am Benthol Soc 26:191–206. doi: 10.1899/0887-3593(2007)26[191:NDWTPR]2.0.CO;2 CrossRefGoogle Scholar
  45. Sato T, Miyajima T, Ogawa H, Umezawa Y, Koike I (2006) Temporal variability of stable carbon and nitrogen isotopic composition of size-fractionated particulate organic matter in the hypertrophic Sumida river estuary of Tokyo Bay, Japan. Estuar Coast Shelf Sci 68:245–258. doi: 10.1016/j.ecss.2006.02.007 CrossRefGoogle Scholar
  46. Sebilo M, Billen G, Grably M, Mariotti A (2003) Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 63:35–51. doi: 10.1023/A:1023362923881 CrossRefGoogle Scholar
  47. Sebilo M, Billen G, Mayer B, Billiou D, Grably M, Garnier J, Mariotti A (2006) Assessing nitrification and denitrification in the Seine river and estuary using chemical and isotopic techniques. Ecosystems (N Y, Print) 9:564–577. doi: 10.1007/s10021-006-0151-9 CrossRefGoogle Scholar
  48. Seitzinger SP, Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Glob Biogeochem Cycles 12:93–113. doi: 10.1029/97GB03657 CrossRefGoogle Scholar
  49. Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Böhlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153. doi: 10.1021/ac010088e CrossRefGoogle Scholar
  50. Sigman DM, Robinson R, Knapp AN, van Geen A, McCorkle DC, Brandes JA, Thunell RC (2003) Distinguishing between water column and sedimentary denitrification in the Santa Barbara Basin using the stable isotopes of nitrate. Geochem Geophys Geosyst 4:1040. doi: 10.1029/2002GC000384 CrossRefGoogle Scholar
  51. Sigman DM, Granger J, DiFiore PJ, Lehmann MM, Ho R, Cane G, van Geen A (2005) Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin. Glob Biogeochem Cycles 19:GB4022. doi: 10.1029/2005GB002458 CrossRefGoogle Scholar
  52. Sugimoto R, Kasai A, Miyajima T, Fujita K (2008) Nitrogen isotopic discrimination by water column nitrification in a shallow coastal environment. J Oceanogr 64:39–48. doi: 10.1007/s10872-008-0003-7 CrossRefGoogle Scholar
  53. Trudeau V, Rasmussen JB (2003) The effect of water velocity on stable carbon and nitrogen isotope signatures of periphyton. Limnol Oceanogr 48:2194–2199Google Scholar
  54. Umezawa Y, Hosono T, Onodera S, Siringan F, Buapeng S, Delinom R, Yoshimizu C, Tayasu I, Nagata T, Taniguchi M (2008) Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities. Sci Total Environ 404:361–376. doi: 10.1016/j.scitotenv.2008.04.021 CrossRefGoogle Scholar
  55. Vörösmarty CJ, Fekete BM, Tucker BA (1996) Global river discharge database (RivDIS v1.0) II. Asia. University of New Hampshire, DurhamGoogle Scholar
  56. Wankel SD, Kendall C, Francis CA, Paytan A (2006) Nitrogen sources and cycling in the San Francisco bay Estuary: a nitrate dual isotopic composition approach. Limnol Oceanogr 51:1654–1664CrossRefGoogle Scholar
  57. Wankel SD, Kendall C, Pennington JT, Chavez FP, Paytan A (2007) Nitrification in the euphotic zone as evidenced by nitrate dual isotopic composition: observations from Monterey Bay, California. Glob Biogeochem Cycles 21:GB2009. doi: 10.1029/2006GB002723 CrossRefGoogle Scholar
  58. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of non-ideal gas. Mar Chem 2:203–215. doi: 10.1016/0304-4203(74)90015-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Toshihiro Miyajima
    • 1
    • 7
  • Chikage Yoshimizu
    • 2
    • 3
  • Yoshie Tsuboi
    • 1
    • 4
  • Yoshiyuki Tanaka
    • 1
    • 5
  • Ichiro Tayasu
    • 2
  • Toshi Nagata
    • 1
    • 2
  • Isao Koike
    • 1
    • 6
  1. 1.Ocean Research InstituteThe University of TokyoNakano, TokyoJapan
  2. 2.Center for Ecological ResearchKyoto UniversityHirano, OtsuJapan
  3. 3.Japan Science and Technology AgencyKawaguchi, SaitamaJapan
  4. 4.Kurume LaboratoryChemicals Evaluation and Research Institute, JapanMiyanojin, KurumeJapan
  5. 5.International College of Arts and SciencesYokohama City UniversityKanazawa, YokohamaJapan
  6. 6.University of the RyukyusNishihara, OkinawaJapan
  7. 7.Department of Chemical Oceanography, Ocean Research InstituteThe University of TokyoNakano, TokyoJapan

Personalised recommendations