Advertisement

Biogeochemistry

, Volume 94, Issue 3, pp 271–287 | Cite as

The effects of elevated atmospheric CO2 and nitrogen amendments on subsurface CO2 production and concentration dynamics in a maturing pine forest

  • Edoardo DalyEmail author
  • Sari Palmroth
  • Paul Stoy
  • Mario Siqueira
  • A. Christopher Oishi
  • Jehn-Yih Juang
  • Ram Oren
  • Amilcare Porporato
  • Gabriel G. Katul
Article

Abstract

Profiles of subsurface soil CO2 concentration, soil temperature, and soil moisture, and throughfall were measured continuously during the years 2005 and 2006 in 16 locations at the free air CO2 enrichment facility situated within a temperate loblolly pine (Pinus taeda L.) stand. Sampling at these locations followed a 4 by 4 replicated experimental design comprised of two atmospheric CO2 concentration levels (ambient [CO2]a, ambient + 200 ppmv, [CO2]e) and two soil nitrogen (N) deposition levels (ambient, ambient + fertilization at 11.2 gN m−2 year−1). The combination of these measurements permitted indirect estimation of belowground CO2 production and flux profiles in the mineral soil. Adjacent to the soil CO2 profiles, direct (chamber-based) measurements of CO2 fluxes from the soil–litter complex were simultaneously conducted using the automated carbon efflux system. Based on the measured soil CO2 profiles, neither [CO2]e nor N fertilization had a statistically significant effect on seasonal soil CO2, CO2 production, and effluxes from the mineral soil over the study period. Soil moisture and temperature had different effects on CO2 concentration depending on the depth. Variations in CO2 were mostly explained by soil temperature at deeper soil layers, while water content was an important driver at the surface (within the first 10 cm), where CO2 pulses were induced by rainfall events. The soil effluxes were equal to the CO2 production for most of the time, suggesting that the site reached near steady-state conditions. The fluxes estimated from the CO2 profiles were highly correlated to the direct measurements when the soil was neither very dry nor very wet. This suggests that a better parameterization of the soil CO2 diffusivity is required for these soil moisture extremes.

Keywords

Soil CO2 dynamics Climate change Elevated atmospheric CO2 Nitrogen deposition Fertilization Loblolly pine 

Notes

Acknowledgments

The authors would like to thank Judd Edeburn and the Duke Forest staff, and Keith Lewin and the Brookhaven National Laboratories staff, in particular Robert Nettles, for their assistance at the Duke Forest FACE site. E. D. thanks Luca Grossini for his help with some of the analyses. The authors also thank T. Christensen and an anonymous reviewer for their suggestions. This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant no. DE-FG02-95ER62083.

References

  1. Andrews JA, Schlesinger WH (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochem Cycles 15:149–162. doi: 10.1029/2000GB001278 CrossRefGoogle Scholar
  2. Baldocchi D, Tang J, Xu L (2006) How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna. J Geophys Res 111:G02008. doi: 10.1029/2005JG000063 CrossRefGoogle Scholar
  3. Bernhardt ES, Barber JJ, Pippen JS, Taneva L, Andrews JA, Schlesinger WH (2006) Long-term effects of free air CO2 enrichment (FACE) on soil respiration. Biogeochem 77:91–116. doi: 10.1007/s10533-005-1062-0 CrossRefGoogle Scholar
  4. Billings SA, Richter DD, Yarie J (1998) Soil carbon dioxide fluxes and profile concentrations in two boreal forests. Can J Res 28:1773–1783. doi: 10.1139/cjfr-28-12-1773 CrossRefGoogle Scholar
  5. Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. For Ecol Manage 196:43–56. doi: 10.1016/j.foreco.2004.03.011 CrossRefGoogle Scholar
  6. Brady NC, Weil RR (2002) The nature and properties of soils. Prentice Hall, Upper Saddle RiverGoogle Scholar
  7. Butnor JR, Johnsen KH (2004) Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity. Eur J Soil Sci 55:639–647. doi: 10.1111/j.1365-2389.2004.00642.x CrossRefGoogle Scholar
  8. Butnor JR, Johnsen KH, Oren R, Katul G (2003) Reduction of forest floor respiration by fertilization on both carbon dioxide-enriched and reference 17-years-old loblolly pine stands. Glob Change Biol 9:849–861. doi: 10.1046/j.1365-2486.2003.00630.x CrossRefGoogle Scholar
  9. Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edn. Springer, New YorkGoogle Scholar
  10. Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252. doi: 10.1038/30460 CrossRefGoogle Scholar
  11. Chen D, Molina AE, Clapp CE, Venterea RT, Palazzo AJ (2005) Corn root influence on automated measurement of soil carbon dioxide concentrations. Soil Sci 170:779–787. doi: 10.1097/01.ss.0000190512.41298.fc CrossRefGoogle Scholar
  12. Cox PM, Betts RA, Jones CD, Spall SA, Totterdel IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187. doi: 10.1038/35041539 CrossRefGoogle Scholar
  13. Daly E, Oishi AC, Porporato A, Katul GG (2008) A stochastic model for daily subsurface CO2 concentration and related soil respiration. Adv Water Resour 31:987–994. doi: 10.1016/j.advwatres.2008.04.001 CrossRefGoogle Scholar
  14. Davidson EA, Belk E, Boone R (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol 4:217–227. doi: 10.1046/j.1365-2486.1998.00128.x CrossRefGoogle Scholar
  15. Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Change Biol 12:154–164. doi: 10.1111/j.1365-2486.2005.01065.x CrossRefGoogle Scholar
  16. Fang C, Moncrieff JB (1999) A model for soil CO2 production and transport. 1: model development. Agric For Meteorol 95:225–236. doi: 10.1016/S0168-1923(99)00036-2 CrossRefGoogle Scholar
  17. Finzi AC, Schlesinger WH (2002) Species control variation on litter decomposition in a pine forest exposed to elevated CO2. Glob Change Biol 8:1217–1229. doi: 10.1046/j.1365-2486.2002.00551.x CrossRefGoogle Scholar
  18. Finzi AC, Allen AS, DeLucia EH, Ellsworth DS, Schlesinger WH (2001) Forest litter production, chemistry, and decomposition following two years of free air CO2 enrichment. Ecology 82:470–484Google Scholar
  19. Flechard CR, Neftel A, Jocher M, Ammann C, Leifeld J, Fuhrer J (2007) Temporal changes in soil pore space CO2 concentration and storage under permanent grassland. Agric For Meteorol 142:66–84. doi: 10.1016/j.agrformet.2006.11.006 CrossRefGoogle Scholar
  20. Freijer JI, Leffelaar PA (1996) Adapted Fick’s law applied to soil respiration. Water Resour Res 32:791–800. doi: 10.1029/95WR03820 CrossRefGoogle Scholar
  21. Gaumont-Guay D, Black TA, Griffis TJ, Barr AG, Jassal RS, Nesic Z (2006) Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agric For Meteorol 140:220–235. doi: 10.1016/j.agrformet.2006.08.003 CrossRefGoogle Scholar
  22. Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861. doi: 10.1038/35009076 CrossRefGoogle Scholar
  23. Glinski J, Stepniewski W (1985) Soil aeration and its role for plants. CRC Press, Boca RatonGoogle Scholar
  24. Hashimoto S, Tanaka N, Kume T, Yoshifuji N, Hotta N, Tanaka K, Suzuki M (2007) Seasonality of vertically partitioned soil CO2 production in temperate and tropical forest. J For Res 12:209–221. doi: 10.1007/s10310-007-0009-9 CrossRefGoogle Scholar
  25. Heath J, Ayres E, Possell M, Bardgett RD, Black HIJ, Grant H, Ineson P, Kerstiens G (2005) Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Science 309:1711–1713. doi: 10.1126/science.1110700 CrossRefGoogle Scholar
  26. Hendrey G, Ellsworth D, Lewin K, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Glob Change Biol 5:293–309. doi: 10.1046/j.1365-2486.1999.00228.x CrossRefGoogle Scholar
  27. Hirano T, Kim H, Tanaka Y (2003) Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest. J Geophys Res 108(D20):4631. doi: 10.1029/2003JD003766 CrossRefGoogle Scholar
  28. Hungate BA, Holland EA, Jackson RB, Chapin FSIII, Mooneyk HA, Field CB (1997) The fate of carbon in grassland under carbon dioxide enrichment. Nature 388:576–579. doi: 10.1038/41550 CrossRefGoogle Scholar
  29. Hyvonen R, Agren GI, Linder S et al (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480. doi: 10.1111/j.1469-8137.2007.01967.x CrossRefGoogle Scholar
  30. Jassal RS, Black TA, Drewitt GB, Novak MD, Gaumont-Guay D, Nesic Z (2004) A model of the production and transport of CO2 in soil: predicting soil CO2 concentrations and CO2 efflux from a forest floor. Agric For Meteorol 124:219–236. doi: 10.1016/j.agrformet.2004.01.013 CrossRefGoogle Scholar
  31. Jassal R, Black A, Novack M, Morgenstern K, Nesic Z, Gaumont-Guay D (2005) Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agric For Meteorol 130:176–192. doi: 10.1016/j.agrformet.2005.03.005 CrossRefGoogle Scholar
  32. Juang J-Y, Porporato A, Stoy PC, Siqueira MBS, Oishi AC, Detto M, Kim HS, Katul GG (2007) Hydrologic and atmospheric controls on convective precipitation events in a southeastern US mosaic landscape. Water Resour Res W03421. doi: 10.1029/2006WR004954
  33. King JS, Hansonw PJ, Bernhardt E, Deangelis P, Norby RJ, Pregitzer KS (2004) A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Glob Change Biol 10:1027–1042. doi: 10.1111/j.1529-8817.2003.00789.x CrossRefGoogle Scholar
  34. Lee X, Wu H-J, Sigler J, Oishi C, Siccama T (2004) Rapid and transient response of soil respiration to rain. Glob Change Biol 10:1017–1026CrossRefGoogle Scholar
  35. Lichter J, Barron S, Finzi A, Irving K, Roberts M, Stemmler E, Schlesinger WH (2005) Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO2 enrichment. Ecology 86:1835–1847. doi: 10.1890/04-1205 CrossRefGoogle Scholar
  36. Maier CA, Kress LW (2000) Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can J For Res 30:347–359. doi: 10.1139/cjfr-30-3-347 CrossRefGoogle Scholar
  37. Makipaa R (1995) Effect of nitrogen input on carbon accumulation of boreal forest soils and ground vegetation. For Ecol Manage 79:217–226. doi: 10.1016/0378-1127(95)03601-6 CrossRefGoogle Scholar
  38. Matamala R, Schlesinger WH (2000) Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Glob Change Biol 6:967–979. doi: 10.1046/j.1365-2486.2000.00374.x CrossRefGoogle Scholar
  39. Millington RJ (1959) Gas diffusion in porous media. Science 130:100–102. doi: 10.1126/science.130.3367.100-a CrossRefGoogle Scholar
  40. Millington RJ, Quirk JM (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207. doi: 10.1039/tf9615701200 CrossRefGoogle Scholar
  41. Oh NH, Richter DD (2005) Elemental translocation and loss from three highly weathered soil–bedrock profiles in the southeastern United States. Geoderma 126:5–25. doi: 10.1016/j.geoderma.2004.11.005 CrossRefGoogle Scholar
  42. Olsson P, Linder S, Giesler R, Hogberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterothropic soil respiration. Glob Change Biol 11:1745–1753. doi: 10.1111/j.1365-2486.2005.001033.x CrossRefGoogle Scholar
  43. Oren R, Pataki DE (2001) Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 127:549–559. doi: 10.1007/s004420000622 CrossRefGoogle Scholar
  44. Oren R, Ewers BE, Todd P, Phillips N, Katul G (1998) Water balance delineates the soil layer in which moisture affects canopy conductance. Ecol Appl 8:990–1002. doi: 10.1890/1051-0761(1998)008[0990:WBDTSL]2.0.CO;2 CrossRefGoogle Scholar
  45. Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472. doi: 10.1038/35078064 CrossRefGoogle Scholar
  46. Oren R, Hsieh C-I, Stoy P, Albertson J, McCarthy HR, Harrell P, Katul GG (2006) Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurements. Glob Change Biol 12:883–896. doi: 10.1111/j.1365-2486.2006.01131.x CrossRefGoogle Scholar
  47. Palmroth S, Maier CA, McCarthy HR, Oishi AC, Kim H-S, Johnsen KH, Katul GG, Oren R (2005) Contrasting responses to drought of forest floor CO2 efflux in a Loblolly pine plantation and a nearby Oak-Hickory forest. Glob Change Biol 11:1–14. doi: 10.1111/j.1365-2486.2005.00915.x CrossRefGoogle Scholar
  48. Palmroth S, Oren R, McCarthy HR, Johnsen KH, Finzi AC, Butnor JR, Ryan MG, Schlesinger WH (2006) Aboveground sink strength in forests controls the allocation of carbon below ground and its CO2-induced enhancement. Proc Natl Acad Sci USA 103:19362–19367. doi: 10.1073/pnas.0609492103 CrossRefGoogle Scholar
  49. Patwardhan AS, Nieber JL, Moore ID (1988) Oxygen, carbon dioxide, and water transfer in soils: mechanisms and crop response. Trans Am Soc Agr Eng 31:1383–1395Google Scholar
  50. Phillips RP, Fahey TJ (2007) Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils. New Phytol 176:655–664. doi: 10.1111/j.1469-8137.2007.02204.x CrossRefGoogle Scholar
  51. Phillips N, Oren R (2001) Intra- and inter-annual variation in transpiration of a pine forest. Ecol Appl 11:385–396. doi: 10.1890/1051-0761(2001)011[0385:IAIAVI]2.0.CO;2 CrossRefGoogle Scholar
  52. Pumpanen J, Ilvesniemi H, Hari P (2003) A process-based model for predicting soil carbon dioxide efflux and concentration. Soil Sci Soc Am J 67:402–413Google Scholar
  53. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99Google Scholar
  54. Rustad LE, Fernandez IJ (1998) Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA. Glob Change Biol 4:597–605. doi: 10.1046/j.1365-2486.1998.00169.x CrossRefGoogle Scholar
  55. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639. doi: 10.1021/ac60214a047 CrossRefGoogle Scholar
  56. Schäfer KV, Oren R, Lai CT, Katul GG (2002) Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Glob Change Biol 8:895–911CrossRefGoogle Scholar
  57. Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Change Biol 1:77–91. doi: 10.1111/j.1365-2486.1995.tb00008.x CrossRefGoogle Scholar
  58. Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academy Press, San DiegoGoogle Scholar
  59. Simunek J, Suarez DL (1993) Modeling of carbon dioxide transport and production in soil. I. Model development. Water Resour Res 29:487–497. doi: 10.1029/92WR02225 CrossRefGoogle Scholar
  60. Steel GD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  61. Suwa M, Katul GG, Oren R, Andrews J, Pippen J, Mace A, Schlesinger WH (2004) Impact of elevated atmospheric CO2 on forest floor respiration in a temperate pine forest. Global Biogeochem Cycles 18:GB2013. doi: 10.129/2003GB002182 CrossRefGoogle Scholar
  62. Takle ES, Massman WJ, Brandle JR et al (2004) Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil. Agric For Meteorol 124:193–206. doi: 10.1016/j.agrformet.2004.01.014 CrossRefGoogle Scholar
  63. Taneva L, Pippen JS, Schlesinger WH, Gonzalez-Meler MA (2006) The turnover of carbon pools contributing to soil CO2 and soil respiration in a temperate forest exposed to elevated CO2 concentration. Glob Change Biol 12:983–994. doi: 10.1111/j.1365-2486.2006.01147.x CrossRefGoogle Scholar
  64. Tang J, Baldocchi DD, Qi Y, Xu L (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meteorol 124:193–206Google Scholar
  65. Thorbjørn A, Moldrup P, Blendstrup H, Komatsu T, Rolston DE (2008) A gas diffusivity model based on air-, solid-, and water-phase resistance in variably saturated soil. Vadose Zone J 7:1276–1286. doi: 10.2136/vzj2008.0023 CrossRefGoogle Scholar
  66. Thorstenson DC, Pollock DW (1989) Gas transport in unsaturated zones: multicomponent systems and the adequacy of Fick’s laws. Water Resour Res 25:477–507. doi: 10.1029/WR025i003p00477 CrossRefGoogle Scholar
  67. Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396. doi: 10.1126/science.272.5260.393 CrossRefGoogle Scholar
  68. Winston GC, Sundquist ET, Stephens BB, Trumbore SE (1997) Winter CO2 fluxes in a boreal forest. J Geophys Res 102(D24):28795–28804. doi: 10.1029/97JD01115 CrossRefGoogle Scholar
  69. Xu L, Baldocchi DD, Tang J (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochem Cycles 18:GB4002. doi: 10.1029/2004GB002281 CrossRefGoogle Scholar
  70. Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222. doi: 10.1046/j.1469-8137.2000.00687.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Edoardo Daly
    • 1
    Email author
  • Sari Palmroth
    • 2
  • Paul Stoy
    • 3
  • Mario Siqueira
    • 2
    • 4
  • A. Christopher Oishi
    • 2
  • Jehn-Yih Juang
    • 5
  • Ram Oren
    • 2
  • Amilcare Porporato
    • 2
    • 6
  • Gabriel G. Katul
    • 2
    • 6
  1. 1.Department of Civil EngineeringMonash UniversityClaytonAustralia
  2. 2.Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  3. 3.School of GeoSciences, Department of Atmospheric and Environmental ScienceUniversity of EdinburghEdinburghUK
  4. 4.Departamento de Engenharia MecânicaUniversidade de BrasíliaBrasíliaBrazil
  5. 5.Department of GeographyNational Taiwan UniversityTaipeiTaiwan
  6. 6.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA

Personalised recommendations