Advertisement

Biogeochemistry

, Volume 95, Issue 1, pp 167–183 | Cite as

Release and uptake of volatile inorganic and organic gases through the snowpack at Niwot Ridge, Colorado

  • Detlev HelmigEmail author
  • Eric Apel
  • Donald Blake
  • Laurens Ganzeveld
  • Barry L. Lefer
  • Simone Meinardi
  • Aaron L. Swanson
Article

Abstract

Whole air drawn from four heights within the high elevation (3,340 m asl), deep, winter snowpack at Niwot Ridge, Colorado, were sampled into stainless steel canisters, and subsequently analyzed by gas chromatography for 51 volatile inorganic and organic gases. Two adjacent plots with similar snow cover were sampled, one over bare soil and a second one from within a snow-filled chamber where Tedlar/Teflon-film covered the ground and isolated it from the soil. This comparison allowed for studying effects from processes in the snowpack itself versus soil influences on the gas concentrations and fluxes within and through the snowpack. Samples were also collected from ambient air above the snow surface for comparison with the snowpack air. Analyzed gas species were found to exhibit three different kinds of behavior: (1) One group of gases, i.e., carbon dioxide (CO2), chloroform (CHCl3), dimethylsulfide (CH3)2S, carbondisulfide (CS2), and dichlorobromomethane (CHBrCl2), displayed higher concentrations inside the snow, indicating a formation of these species and release into the atmosphere. (2) A second group of compounds, including carbon monoxide (CO), carbonyl sulfide (COS), the hydrocarbons methane, ethane, ethyne, benzene, and the halogenated compounds methylchloride (CH3Cl), methylbromide (CH3Br), dibromomethane (CH2Br2), bromoform (CHBr3), tetrachloromethane (CCl4), CFC-11, CFC-12, HCFC-22, CFC-113, 1,2-dichloroethane, methylchloroform, HCFC-141b, and HCFC-142b, were found at lower concentrations in the snow, indicating that the snow and/or soil constitute a sink for these gases. (3) For 21 other gases absolute concentrations, respectively concentration gradients, were too low to unequivocally identify their uptake or release behavior. For gases listed in the first two groups, concentration gradients were incorporated into a snowpack gas diffusion model to derive preliminary estimates of fluxes at the snow-atmosphere interface. The snowpack gradient flux technique was found to offer a highly sensitive method for the study of these surface gas exchanges. Microbial activities below this deep, winter snowpack appear to be the driving mechanism behind these gas sources and sinks. Flux results were applied to a simple box model to assess the potential contribution of the snowpack uptake rates to atmospheric lifetimes of these species.

Keywords

Snow Soil Winter Fluxes Volatile inorganic and organic gases CFC HCFC Hydrocarbons 

Notes

Acknowledgments

Research at Niwot Ridge is funded by the Long-Term Ecological Research grant from the National Science Foundation (award # NSF DEB-9211776). We thank S. Harrold, and B. Seok for help with the data analyses, and other participants in the spring 2005 Niwot Ridge snow study for their assistance in the field work. This work was also supported by NSF grant OPP-0240976. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

  1. Anastasio C, Galbavy ES, Hutterli MA, Burkhart JF, Friel DK (2007) Photoformation of hydroxyl radical on snow grains at Summit, Greenland. Atmos Environ 41:5110–5121. doi: 10.1016/j.atmosenv.2006.12.011 CrossRefGoogle Scholar
  2. Apel EC, Calvert JG, Gilpin TM, Fehsenfeld F, Lonneman WA (2003) Nonmethane hydrocarbon intercomparison experiment (NOMHICE): Task 4, ambient air. J Geophys Res 108:4359. doi: 10.1029/2003JD003783 CrossRefGoogle Scholar
  3. Ariya PA, Dastoor AP, Amyot M, Schroeder WH, Barrie L, Anlauf K, Raofie F, Ryzhkov A, Davignon D, Lalonde J, Steffen A (2004) The Arctic: a sink for mercury. Tellus B Chem Phys Meterol 56:397–403CrossRefGoogle Scholar
  4. Beyersdorf AJ, Blake NJ, Swanson AL, Meinardi S, Dibb JE, Sjostedt S, Huey G, Lefer B, Rowland FS, Blake DR (2007) Hydroxyl concentration estimates in the sunlit snowpack at Summit, Greenland. Atmos Environ 41:5101–5109. doi: 10.1016/j.atmosenv.2006.08.058 CrossRefGoogle Scholar
  5. Bird RB, Steward WE, Lightfoot EN (2001) Transport phenomena, 2nd edn. Wiley, New YorkGoogle Scholar
  6. Blais JM, Schindler DW, Muir DCG, Kimpe LE, Donald DB, Rosenberg B (1998) Accumulation of persistent organochlorine compounds in mountains of western Canada. Nature 395:585–588. doi: 10.1038/26944 CrossRefGoogle Scholar
  7. Bocquet F, Helmig D, Oltmans SJ (2007) Ozone in interstitial air of the mid-latitude, seasonal snowpack at Niwot Ridge, Colorado. Arct Antarct Alp Res 39:375–387. doi: 10.1657/1523-0430(06-027)[BOQUET]2.0.CO;2 CrossRefGoogle Scholar
  8. Bowling DR, Massman WJ, Schaeffer SM, Burns SP, Monson RK, Williams MW (2009) Biological and physical influences on the carbon isotope content of CO2 in a subalpine forest snowpack, Niwot Ridge, Colorado. Biogeochemistry. doi: 10.1007/s10533-008-9233-4 Google Scholar
  9. Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from Alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia 110:403–413Google Scholar
  10. Colman JJ, Swanson AL, Meinardi S, Sive BC, Blake DR, Rowland FS (2001) Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-tropics A and B. Anal Chem 73:3723–3731. doi: 10.1021/ac010027g CrossRefGoogle Scholar
  11. Constant P, Poissant L, Villemur R (2008) Annual hydrogen, carbon monoxide and carbon dioxide concentrations and surface to air exchanges in a rural area (Quebec, Canada). Atmos Environ 42:5090–5100. doi: 10.1016/j.atmosenv.2008.02.021 CrossRefGoogle Scholar
  12. Cowie M, Watts H (1971) Diffusion of methane and chloromethanes in air. Can J Chem 49:74–77. doi: 10.1139/v71-011 CrossRefGoogle Scholar
  13. Cox ML, Fraser PJ, Sturrock GA, Siems ST, Porter LW (2004) Terrestrial sources and sinks of halomethanes near Cape Grim, Tasmania. Atmos Environ 38:3839–3852. doi: 10.1016/j.atmosenv.2004.03.050 CrossRefGoogle Scholar
  14. Curry CL (2007) Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochem Cycles 21:15. doi: 10.1029/2006GB002818 CrossRefGoogle Scholar
  15. Dibb JE, Albert M, Courville Z, Anastasio C, Galbavy ES, Atlas E, Beyersdorf AJ, Blake DR, Meinardi S, Rowland FS, Swanson AL, Blake NJ, Bocquet F, Cohen L, Helmig D, Burkhart JF, Frey MM, Friel DK, Hutterli MA, Chen G, Conway TJ, Oltrnans SJ (2007) An overview of air-snow exchange at Summit, Greenland: recent experiments and findings. Atmos Environ 41:4995–5006. doi: 10.1016/j.atmosenv.2006.12.006 CrossRefGoogle Scholar
  16. Domine F, Shepson PB (2002) Air-snow interactions and atmospheric chemistry. Science 297:1506–1510. doi: 10.1126/science.1074610 CrossRefGoogle Scholar
  17. Eisele F, Davis DD, Helmig D, Oltmans SJ, Neff W, Huey G, Tanner D, Chen G, Crawford J, Arimoto R, Buhr M, Mauldin L, Hutterli M, Dibb J, Blake D, Brooks SB, Johnson B, Roberts JM, Wang YH, Tan D, Flocke F (2008) Antarctic tropospheric chemistry investigation (ANTCI) 2003 overview. Atmos Environ 42:2749–2761. doi: 10.1016/j.atmosenv.2007.04.013 CrossRefGoogle Scholar
  18. Filippa G, Freppaz M, Williams MW, Helmig D, Liptzin D, Seok B, Hall B, Chowanski K (2009) Winter and summer nitrous oxide and nitrogen oxides fluxes from a seasonally snow-covered subalpine meadow at Niwot Ridge, Colorado. Biogeochemistry. doi: 10.1007/s10533-009-9304-1 Google Scholar
  19. France JL, King MD, Lee-Taylor J (2007) Hydroxyl (OH) radical production rates in snowpacks from photolysis of hydrogen peroxide (H2O2) and nitrate (NO3 ). Atmos Environ 41:5502–5509CrossRefGoogle Scholar
  20. Franz TP, Eisenreich SJ (1998) Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota. Environ Sci Technol 32:1771–1778. doi: 10.1021/es970601z CrossRefGoogle Scholar
  21. Grannas AM, Jones AE, Dibb J, Ammann M, Anastasio C, Beine HJ, Bergin M, Bottenheim J, Boxe CS, Carver G, Chen G, Crawford JH, Domine F, Frey MM, Guzman MI, Heard DE, Helmig D, Hoffmann MR, Honrath RE, Huey LG, Hutterli M, Jacobi HW, Klan P, Lefer B, McConnell J, Plane J, Sander R, Savarino J, Shepson PB, Simpson WR, Sodeau JR, von Glasow R, Weller R, Wolff EW, Zhu T (2007) An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos Chem Phys 7:4329–4373Google Scholar
  22. Groffman PM, Hardy JP, Driscoll CT, Fahey TJ (2006) Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Glob Change Biol 12:1748–1760. doi: 10.1111/j.1365-2486.2006.01194.x CrossRefGoogle Scholar
  23. Happell JD, Roche MP (2003) Soils: a global sink of atmospheric carbon tetrachloride. Geophys Res Lett 30:1088. doi: 10.1029/2002GL015957 CrossRefGoogle Scholar
  24. Helmig D, Seok B, Williams MW, Hueber J, Sanford R Jr (2009) Fluxes and chemistry of nitrogen oxides in the Niwot Ridge, Colorado, snowpack. Biogeochemistry. doi: 10.1007/s10533-009-9312-1 Google Scholar
  25. Hoekstra EJ, Duyzer JH, de Leer EWB, Brinkman UAT (2001) Chloroform—concentration gradients in soil air and atmospheric air, and emission fluxes from soil. Atmos Environ 35:61–70CrossRefGoogle Scholar
  26. Karbiwnyk CM, Mills CS, Helmig D, Birks JW (2003) Use of chlorofluorocarbons as internal standards for the measurement of atmospheric non-methane volatile organic compounds sampled onto solid adsorbent cartridges. Environ Sci Technol 37:1002–1007. doi: 10.1021/es025910q CrossRefGoogle Scholar
  27. Keppler F, Harper DB, Rockmann T, Moore RM, Hamilton JTG (2005) New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos Chem Phys 5:2403–2411CrossRefGoogle Scholar
  28. Kesselmeier J, Hubert A (2002) Exchange of reduced volatile sulfur compounds between leaf litter and the atmosphere. Atmos Environ 36:4679–4686. doi: 10.1016/S1352-2310(02)00413-2 CrossRefGoogle Scholar
  29. Kesselmeier J, Teusch N, Kuhn U (1999) Controlling variables for the uptake of atmospheric carbonyl sulfide by soil. J Geophys Research-Atmospheres 104:11577–11584. doi: 10.1029/1999JD900090 CrossRefGoogle Scholar
  30. Khalil MAK, Rasmussen RA (2000) Soil-atmosphere exchange of radiatively and chemically active gases. Environ Sci Pollut Res 7:79–82. doi: 10.1065/espr2000.04.021 CrossRefGoogle Scholar
  31. King GM, Crosby H (2002) Impacts of plant roots on soil CO cycling and soil-atmosphere CO exchange. Glob Change Biol 8:1085–1093. doi: 10.1046/j.1365-2486.2002.00545.x CrossRefGoogle Scholar
  32. Laturnus F, Haselmann KF, Borch T, Gron C (2002) Terrestrial natural sources of trichloromethane (chloroform, CHCl3)—an overview. Biogeochemistry 60:121–139. doi: 10.1023/A:1019887505651 CrossRefGoogle Scholar
  33. Liptzin D, Williams MW, Helmig D, Seok B, Filippa G, Chowanski K, Hueber J (2009) Process-level controls on CO2 fluxes from a seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado. Biogeochemistry. doi: 10.1007/s10533-009-9303-2 Google Scholar
  34. Lugg GA (1968) Diffusion coefficients of some organic and other vapors in air. Anal Chem 40:1072–1077CrossRefGoogle Scholar
  35. Massman WJ (1998) A review of the molecular diffusivities of H2O, CO2, CH4, CO, O-3, SO2, NH3, N2O, NO, and NO2 in air, O2, and N2 near STP. Atmos Environ 32:1111–1127. doi: 10.1016/S1352-2310(97)00391-9 CrossRefGoogle Scholar
  36. Monson RK, Burns SP, Williams MW, Delany AC, Weintraub M, Lipson DA (2006) The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Global Biogeochem Cycles 20:GB3030. doi: 10.1029/2005GB002684 CrossRefGoogle Scholar
  37. Nelson GO (1971) Controlled Test Atmospheres. Ann Arbor Science Publishers, Ann ArborGoogle Scholar
  38. Nobrega S, Grogan P (2007) Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems (N Y, Print) 10:419–431CrossRefGoogle Scholar
  39. Rhew RC, Abel T (2007) Measuring simultaneous production and consumption fluxes of methyl chloride and methyl bromide in annual temperate grasslands. Environ Sci Technol 41:7837–7843. doi: 10.1021/es0711011 CrossRefGoogle Scholar
  40. Roesch A, Roeckner E (2006) Assessment of snow cover and surface albedo in the ECHAM5 general circulation model. J Clim 19:3828–3843. doi: 10.1175/JCLI3825.1 CrossRefGoogle Scholar
  41. Schall C, Laturnus F, Heumann KG (1994) Biogenic volatile organoiodine and organobromine compounds released from polar macroalgae. Chemosphere 28:1315–1324. doi: 10.1016/0045-6535(94)90076-0 CrossRefGoogle Scholar
  42. Seok B, Helmig D, Williams MW, Liptzin D, Chowanski K, Hueber J (2009) An automated system for continuous measurements of trace gas fluxes through snow: an evaluation of the gas diffusion method at a subalpine forest site, Niwot Ridge, Colorado. Biogeochemistry. doi: 10.1007/s10533-009-9302-3 Google Scholar
  43. Serca D, Guenther A, Klinger L, Helmig D, Hereid D, Zimmerman P (1998) Methyl bromide deposition to soils. Atmos Environ 32:1581–1586CrossRefGoogle Scholar
  44. Sommerfeld RA, Mosier AR, Musselman RC (1993) CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature 361:140–142. doi: 10.1038/361140a0 CrossRefGoogle Scholar
  45. Steinbacher M, Bingemer HG, Schmidt U (2004) Measurements of the exchange of carbonyl sulfide (OCS) and carbon disulfide (CS2) between soil and atmosphere in a spruce forest in central Germany. Atmos Environ 38:6043–6052. doi: 10.1016/j.atmosenv.2004.06.022 CrossRefGoogle Scholar
  46. Suzuki S, Ishizuka S, Kitamura K, Yamanoi K, Nakai Y (2006) Continuous estimation of winter carbon dioxide efflux from the snow surface in a deciduous broadleaf forest. J Geophys Res 111:D17101. doi: 10.1029/2005JD006595 CrossRefGoogle Scholar
  47. Swanson AL, Blake NJ, Dibb JE, Albert MR, Blake DR, Rowland FS (2002) Photochemically induced production of CH3Br, CH3I, C2H5I, ethene, and propene within surface snow at Summit, Greenland. Atmos Environ 36:2671–2682CrossRefGoogle Scholar
  48. Swanson AL, Lefer BL, Stroud V, Atlas E (2005) Trace gas emissions through a winter snowpack in the subalpine ecosystem at Niwot Ridge, Colorado. Geophys Res Lett 32:L03805. doi: 10.1029/2004GL021809 CrossRefGoogle Scholar
  49. Varner RK, Crill PM, Talbot RW, Shorter JH (1999) An estimate of the uptake of atmospheric methyl bromide by agricultural soils. Geophys Res Lett 26:727–730CrossRefGoogle Scholar
  50. Wang JX, Li RJ, Guo YY, Qin P, Sun SC (2006a) The flux of methyl chloride along an elevational gradient of a coastal salt marsh, Eastern China. Atmos Environ 40:6592–6605. doi: 10.1016/j.atmosenv.2006.05.065 CrossRefGoogle Scholar
  51. Wang JX, Li RJ, Guo YY, Qin P, Sun SC (2006b) Removal of methyl chloroform in a coastal salt marsh of eastern China. Chemosphere 65:1371–1380. doi: 10.1016/j.chemosphere.2006.04.019 CrossRefGoogle Scholar
  52. Warwick NJ, Pyle JA, Carver GD, Yang X, Savage NH, O’Connor FM, Cox RA (2006a) Global modeling of biogenic bromocarbons. J Geophys Res 111:D24305. doi: 10.1029/2006JD007264 CrossRefGoogle Scholar
  53. Warwick NJ, Pyle JA, Shallcross DE (2006b) Global modelling of the atmospheric methyl bromide budget. J Atmos Chem 54:133–159. doi: 10.1007/s10874-006-9020-3 CrossRefGoogle Scholar
  54. Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210. doi: 10.1016/S0012-8252(01)00062-9 CrossRefGoogle Scholar
  55. Yi ZG, Wang XM, Sheng GY, Fu HM (2008) Exchange of carbonyl sulfide (OCS) and dimethyl sulfide (DMS) between rice paddy fields and the atmosphere in subtropical China. Agric Ecosyst Environ 123:116–124. doi: 10.1016/j.agee.2007.05.011 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Detlev Helmig
    • 1
    Email author
  • Eric Apel
    • 2
  • Donald Blake
    • 3
  • Laurens Ganzeveld
    • 4
  • Barry L. Lefer
    • 5
  • Simone Meinardi
    • 3
  • Aaron L. Swanson
    • 3
    • 6
  1. 1.Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA
  4. 4.Department of Environmental SciencesWageningen University and Research CenterWageningenThe Netherlands
  5. 5.Earth and Atmospheric Sciences DepartmentUniversity of HoustonHoustonUSA
  6. 6.Department of ChemistryNorthrop Grumman Space TechnologyRedondo BeachUSA

Personalised recommendations