Advertisement

Biogeochemistry

, Volume 94, Issue 3, pp 255–270 | Cite as

Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost

  • Kelly L. Balcarczyk
  • Jeremy B. JonesJr.
  • Rudolf Jaffé
  • Nagamitsu Maie
Article

Abstract

We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. We analyzed long term data from watersheds underlain with varying degrees of permafrost, sampled springs and thermokarsts, used fluorescence spectroscopy, and measured the bioavailabity of dissolved organic carbon (DOC). Permafrost driven patterns in hydrology and vegetation influenced DOM patterns in streams, with the stream draining the high permafrost watershed having higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOC:DON and greater specific ultraviolet absorbance (SUVA) than the streams draining the low and medium permafrost watersheds. Streams, springs and thermokarsts exhibited a wide range of DOC and DON concentrations (1.5–37.5 mgC/L and 0.14–1.26 mgN/L, respectively), DOC:DON (7.1–42.8) and SUVA (1.5–4.7 L mgC−1 m−1). All sites had a high proportion of humic components, a low proportion of protein components, and a low fluorescence index value (1.3–1.4), generally consistent with terrestrially derived DOM. Principal component analysis revealed distinct groups in our fluorescence data determined by diagenetic processing and DOM source. The proportion of bioavailable DOC ranged from 2 to 35%, with the proportion of tyrosine- and tryptophan-like fluorophores in the DOM being a major predictor of DOC loss (p < 0.05, R 2 = 0.99). Our results indicate that the degradation of permafrost in CPCRW will result in a decrease in DOC and DON concentrations, a decline in DOC:DON, and a reduction in SUVA, possibly accompanied by a change in the proportion of bioavailable DOC.

Keywords

Bioavailability Boreal forest Discontinuous permafrost Dissolved organic matter Fluorescence Thermokarst 

Notes

Acknowledgments

We would like to thank Rich Boone and Dan White for their valuable comments on the research and manuscript. Thanks to Emma Betts, Hannah Clilverd, Amanda Rinehart, Emily Schwing and Julia Taylor for their help in the field and laboratory. Thanks also to two anonymous reviewers for their constructive comments on the manuscript. This research was supported by Bonanza Creek Long-Term Ecological Research program (funded jointly by NSF grant DEB-0423442 and USDA Forest Service, Pacific Northwest Research Station grant PNW01-JV11261952-231). The EEM-PARAFAC work was supported through a NSF funded inter-LTER collaboration between the Bonanza Creek and Florida Coastal Everglades Long-Term Ecological Research sites. SERC contribution #401.

References

  1. Amon RMW, Fitznar H, Benner R (2001) Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol Oceanogr 46:287–297Google Scholar
  2. Baker A, Spencer RGM (2004) Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci Total Environ 333:217–232. doi: 10.1016/j.scitotenv.2004.04.013 CrossRefGoogle Scholar
  3. Baker M, Valett M, Dahm C (2000) Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81:3133–3148Google Scholar
  4. Battin TJ (1998) Dissolved organic materials and its optical properties in a blackwater tributary of the upper Orinoco River, Venezuela. Org Geochem 28:561–569. doi: 10.1016/S0146-6380(98)00028-X CrossRefGoogle Scholar
  5. Battin TJ, Wille A, Psenner R, Richter A (2004) Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences 1:159–171Google Scholar
  6. Berg B, Meentemeyer V (2002) Litter quality in a northern European transect versus carbon storage potential. Plant Soil 242:83–92. doi: 10.1023/A:1019637807021 CrossRefGoogle Scholar
  7. Bolton WR, Hinzman L, Yoshikawa K (2004) Water balance dynamics of three small catchments in a Sub-Arctic boreal forest. Northern Research Basins Water Balance In: Proceedings of a workshop held at Victoria Canada 2004, IAHS published 290Google Scholar
  8. Boyer EW, Hornberger GM, Bencala KE, Mcknight DM (1996) Overview of a simple model describing variation of dissolved organic carbon in an upland catchment. Ecol Modell 86:183–188. doi: 10.1016/0304-3800(95)00049-6 CrossRefGoogle Scholar
  9. Boyer EW, Hornberger GM, Bencala KE, Mcknight DM (1997) Response characteristics of DOC flushing in an alpine catchment. Hydrol Process 11:1635–1647. doi: 10.1002/(SICI)1099-1085(19971015)11:12≤1635::AID-HYP494≥3.0.CO;2-H CrossRefGoogle Scholar
  10. Buffman I, Galloway JN, Blum LK, McGlathery KJ (2001) A stormflow/baseflow comparison of dissolved organic matter and bioavailability in an Appalachian stream. Biogeochemistry 53:269–306. doi: 10.1023/A:1010643432253 CrossRefGoogle Scholar
  11. Cai Y, Guo L, Douglas TA (2008) Temporal variation in organic carbon species and fluxes from the Chena River, Alaska. Limnol Oceanogr 53:1408–1419Google Scholar
  12. Cammack WK, Kalff J, Prairie YT, Smith EM (2004) Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnol Oceanogr 49:2034–2045Google Scholar
  13. Carey SK (2003) Dissolved organic carbon fluxes in a discontinuous permafrost subarctic alpine catchment. Permafrost Periglac Process 14:161–171. doi: 10.1002/ppp.444 CrossRefGoogle Scholar
  14. Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51:325–346. doi: 10.1016/0304-4203(95)00062-3 CrossRefGoogle Scholar
  15. Coble PG, Del Castillo CE, Bernard A (1998) Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Res Part II Top Stud Oceanogr 45:2195–2223. doi: 10.1016/S0967-0645(98)00068-X CrossRefGoogle Scholar
  16. Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149. doi: 10.1021/es0506962 CrossRefGoogle Scholar
  17. Dornblaser MM, Striegl RG (2007) Nutrient (N, P) loads and yields at multiple scales and subbasin types in the Yukon river basin, Alaska. J Geophys Res 112:G04S57. doi: 10.1029/2006JG000366 CrossRefGoogle Scholar
  18. Findlay S, Strayer D, Goumbala C, Gould K (1993) Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnol Oceanogr 38:1493–1499Google Scholar
  19. Guo L, Ping C, Macdonald RW (2007) Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophys Res Lett 34:L13603. doi: 10.1029/2007GL030689 CrossRefGoogle Scholar
  20. Haugen RK, Slaughter CW, Howe KE, Dingman SL (1982) Hydrology and climatology of the Caribou-Poker Creeks Research Watershed, Alaska. U.S. Army Corp of Engineers, Cold Regions Research and Engineering Laboratory report 82-26Google Scholar
  21. Hinton MJ, Schiff SL, English MC (1998) Sources and flowpaths of dissolved organic carbon during storms in two forested watersheds of the Precambrian Shield. Biogeochemistry 41:175–197. doi: 10.1023/A:1005903428956 CrossRefGoogle Scholar
  22. Hinzman LD, Fakuda M, Sandberg DV, Chapin FSIII, Dash D (2003) FROSTFIRE: an experimental approach to predicting the climate feedbacks from the changing boreal fire regime. J Geophys Res 108:8153. doi: 10.1029/2001JD000415 CrossRefGoogle Scholar
  23. Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith G, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Nolan M, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker J, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Change 72:251–298. doi: 10.1007/s10584-005-5352-2 CrossRefGoogle Scholar
  24. Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Change Biol 6:196–210. doi: 10.1046/j.1365-2486.2000.06021.x CrossRefGoogle Scholar
  25. Hood E, Williams MW, Mcknight DM (2005) Sources of dissolved organic matter in a rocky mountain stream using chemical fractionation and stable isotopes. Biogeochemistry 74:231–255. doi: 10.1007/s10533-004-4322-5 CrossRefGoogle Scholar
  26. Hood E, Gooseff MN, Johnson SL (2006) Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds, Oregon. J Geophys Res 111:1–8. doi: 10.1029/2005JG000082 CrossRefGoogle Scholar
  27. Jaffé R, Boyer JN, Lu X, Maie N, Yang C, Scully NM, Mock S (2004) Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Mar Chem 84:195–210. doi: 10.1016/j.marchem.2003.08.001 CrossRefGoogle Scholar
  28. Jones JB, Fisher SG, Grimm NB (1996) A long-term perspective of dissolved organic carbon transport in Sycamore Creek, Arizona, USA. Hydrobiologia 317:183–188. doi: 10.1007/BF00036468 CrossRefGoogle Scholar
  29. Kaiser K, Zech W (1998) Soil dissolved organic matter sorption as influenced by organic and sesquioxide coatings and sorbed sulfate. Soil Sci Am J 62:129–136Google Scholar
  30. Kaiser K, Guggenberger G, Haumaier L, Zech W (1997) Dissolved organic matter sorption on subsoils and minerals studied by C-13-NMR and DRIFT spectroscopy. Eur J Soil Sci 48:301–310. doi: 10.1111/j.1365-2389.1997.tb00550.x CrossRefGoogle Scholar
  31. Kalbitz K, Solinger S, Park JH, Micahlzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304. doi: 10.1097/00010694-200004000-00001 CrossRefGoogle Scholar
  32. Katsuyama M, Ohte N (2002) Determining the sources of stormflow from the fluorescence properties of dissolved organic carbon in a forested headwater catchment. J Hydrol (Amst) 268:192–202. doi: 10.1016/S0022-1694(02)00175-0 CrossRefGoogle Scholar
  33. Kawahigashi M, Kaiser K, Kalbitz K, Rodionov A, Guggenberger G (2004) Dissolved organic matter in small streams along a gradient from discontinuous to continuous permafrost. Glob Change Biol 10:1576–1586. doi: 10.1111/j.1365-2486.2004.00827.x CrossRefGoogle Scholar
  34. Kim S, Kaplan LA, Hatcher PG (2006) Biodegradable dissolved organic matter in a temperate and a tropical stream determined from ultra—high resolution mass spectrometry. Limnol Oceanogr 51:1054–1063CrossRefGoogle Scholar
  35. Lafreniére MJ, Sharp MJ (2004) The concentration and fluorescence of dissolved organic carbon (DOC) in glacial and nonglacial catchments: interpreting hydrological flow routing and DOC sources. Arct Antarct Alp Res 36:156–165. doi: 10.1657/1523-0430(2004)036[0156:TCAFOD]2.0.CO;2 CrossRefGoogle Scholar
  36. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New YorkGoogle Scholar
  37. Lovely DR, Fraga JL, Coates JD, Blunt-Harris EL (1999) Humics as an electron donor for anaerobic respiration. Environ Microbiol 1:89–98. doi: 10.1046/j.1462-2920.1999.00009.x CrossRefGoogle Scholar
  38. Lu XQ, Maie N, Childers DL, Jaffé R (2003) Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades. Water Res 37:2599–2606. doi: 10.1016/S0043-1354(03)00081-2 CrossRefGoogle Scholar
  39. MacLean R, Oswood MW, Irons JGIII, McDowell WH (1999) The effect of permafrost on stream biogeochemistry: a case study of two streams in the Alaskan Taiga. Biogeochemistry 47:239–267. doi: 10.1007/BF00992909 CrossRefGoogle Scholar
  40. Maie N, Boyer JN, Yang C, Jaffé R (2006) Spatial, geomorphological, and seasonal variability of CDOM in estuaries of the Florida coastal everglades. Hydrobiologia 569:135–150. doi: 10.1007/s10750-006-0128-x CrossRefGoogle Scholar
  41. McKnight DM, Thurman EM, Wershaw RL, Hemond H (1985) Biogeochemistry of aquatic humic substances in Thoreau’s Bog, Concord, Massachusetts. Ecology 66:1339–1352. doi: 10.2307/1939187 CrossRefGoogle Scholar
  42. McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Anderson DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromacticity. Limnol Oceanogr 46:38–48Google Scholar
  43. Michaelson GJ, Ping CL, Kling GW, Hobbie JE (1998) The character and bioactivity of dissolved organic matter at thaw and in the spring runoff waters of the arctic tundra north slope, Alaska. J Geophys Res 103:28939–28946. doi: 10.1029/98JD02650 CrossRefGoogle Scholar
  44. Mladenov N, McKnight DM, Wolski P, Ramberg L (2005) Effects of annual flooding on dissolved organic carbon dynamics within a pristine wetland, the Okavango Delta, Botswana. Wetlands 25:622–638. doi: 10.1672/0277-5212(2005)025[0622:EOAFOD]2.0.CO;2 CrossRefGoogle Scholar
  45. Moran MA, Sheldon WM, Zepp RG (2000) Carbon loss and optical property change during long-term photochemical and biological degradation of estuarine organic matter. Limnol Oceanogr 45:1254–1264CrossRefGoogle Scholar
  46. Morris DP, Hargreaves BR (1997) The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of 3 lakes on the Pocono plateau. Limnol Oceanogr 42:239–249Google Scholar
  47. Mulholland PJ (1997) Dissolved organic matter concentration and flux in streams. In: Webster JR, Meyer JL (eds) Stream organic matter budgets, pp 122–131. J North Am Benthol Soc 16: 3–161Google Scholar
  48. O’Donnell JA, Jones JB (2006) Nitrogen retention in the riparian zone of catchments underlain by discontinuous permafrost. Freshw Biol 51:854–864. doi: 10.1111/j.1365-2427.2006.01535.x CrossRefGoogle Scholar
  49. Petrone KC, Jones JB, Hinzman LD, Boone RD (2006) Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res 111:G02020. doi: 10.1029/2005JG000055 CrossRefGoogle Scholar
  50. Petrone KC, Hinzman LD, Shibata H, Jones JB, Boone RD (2007) The influence of fire and permafrost on sub-arctic stream chemistry during storms. Hydrol Process 21:423–434. doi: 10.1002/hyp.6247 CrossRefGoogle Scholar
  51. Prescott CE, Vesterdal L, Preston CM, Simard SW (2004) Influence of initial chemistry on decomposition of foliar litter in contrasting forest types in British Columbia. Can J For Res 34:1714–1729. doi: 10.1139/x04-040 CrossRefGoogle Scholar
  52. Qualls RG, Haines BL (1991) Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Sci Soc Am J 55:1112–1123Google Scholar
  53. Raymond PA, Bauer JE (2000) Bacterial consumption of DOC during transport through a temperate estuary. Aquat Microb Ecol 22:1–12. doi: 10.3354/ame022001 CrossRefGoogle Scholar
  54. Sobczak WV, Findlay S (2002) Variation in bioavailability of dissolved organic carbon among stream hyporheic flowpaths. Ecology 83:3194–3209CrossRefGoogle Scholar
  55. Stedmon CA, Markager S (2005a) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697CrossRefGoogle Scholar
  56. Stedmon CA, Markager S (2005b) Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol Oceanogr 50:1415–1426CrossRefGoogle Scholar
  57. Stedmon CA, Markager S, Rasmus B (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254. doi: 10.1016/S0304-4203(03)00072-0 CrossRefGoogle Scholar
  58. Stedmon CA, Markager S, Tranvik L, Kronberg L, Slätis T, Martinsen W (2007) Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Mar Chem 104:227–240. doi: 10.1016/j.marchem.2006.11.005 CrossRefGoogle Scholar
  59. Stieglitz M, Shaman J, McNamara J, Engel V, Shanley J, Kling GW (2003) An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Global Biogeochem Cycles 17. doi: 10.1029/2003GB002041
  60. Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32:L21413. doi: 10.1029/2005GL024413 CrossRefGoogle Scholar
  61. Striegl RG, Dornblaser MM, Aiken GR, Wickland KP, Raymond PA (2007) Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resour Res 43:W02411. doi: 10.1029/2006WR005201 CrossRefGoogle Scholar
  62. Ussiri D, Johnson C (2004) Sorption of organic carbon fractions by spodosol mineral horizons. Soil Sci Soc Am J 68:253–262CrossRefGoogle Scholar
  63. Van Cleve K, Oliver L, Schlentner R, Viereck LA, Dyrness CT (1983) Productivity and nutrient cycling in taiga forest ecosystems. Can J For Res 13:747–767. doi: 10.1139/x83-105 CrossRefGoogle Scholar
  64. Viereck L, Dyrness C, Van Cleve K, Foote MJ (1983) Vegetation, soils and forest productivity in selected forest types in interior Alaska. Can J For Res 13:703–720. doi: 10.1139/x83-101 CrossRefGoogle Scholar
  65. Volk CJ, Volk CB, Kaplan LA (1997) Chemical composition of dissolved organic matter in streamwater. Limnol Oceanogr 42:39–44Google Scholar
  66. Waiser MJ, Robarts RD (2004) Photodegradation of DOC in a shallow prairie wetland: evidence from seasonal changes in DOC optical properties and chemical characteristics. Biogeochemistry 69:263–284. doi: 10.1023/B:BIOG.0000031048.20050.4e CrossRefGoogle Scholar
  67. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708. doi: 10.1021/es030360x CrossRefGoogle Scholar
  68. White D, Autier V, Yoshikawa K, Jones JB, Seelen S (2008) Using DOC to better understand local hydrology in a subarctic watershed. Cold Reg Sci Technol 51:68–75. doi: 10.1016/j.coldregions.2007.08.005 CrossRefGoogle Scholar
  69. Wickland KP, Neff JC (2008) Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry 87:29–47. doi: 10.1007/s10533-007-9166-3 CrossRefGoogle Scholar
  70. Wickland KP, Neff JC, Aiken GR (2007) Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems (N Y, Print) 10:1323–1340. doi: 10.1007/s10021-007-9101-4 CrossRefGoogle Scholar
  71. Xu C, Guo L, Dou F, Ping C (2009) Potential DOC production from size-fractionated Arctic tundra soils. Cold Reg Sci Technol 55:141–150. doi: 10.1016/j.coldregions.2008.08.001 CrossRefGoogle Scholar
  72. Yamashita Y, Tanoue E (2003) Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar Chem 82:255–271. doi: 10.1016/S0304-4203(03)00073-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kelly L. Balcarczyk
    • 1
  • Jeremy B. JonesJr.
    • 1
  • Rudolf Jaffé
    • 2
    • 3
  • Nagamitsu Maie
    • 2
    • 4
  1. 1.Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA
  2. 2.Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  3. 3.Department of Chemistry and BiochemistryFlorida International UniversityMiamiUSA
  4. 4.Laboratory of Water Environment, School of Veterinary MedicineKitasato UniversityTowadaJapan

Personalised recommendations