Biogeochemistry

, Volume 94, Issue 3, pp 197–215

Compositional changes in fish scale hydroxylapatite during early diagenesis; an example from an abandoned meander

  • J. Kalvoda
  • M. Novák
  • O. Bábek
  • R. Brzobohatý
  • M. Holá
  • I. Holoubek
  • V. Kanický
  • R. Škoda
Article

Abstract

The chemistry of recent fish scales (tench, common carp, amur and European perch) and subrecent fish scales (European perch and mostly taxonomically not determined) was studied by means of laser ablation inductively coupled plasma mass spectrometry and electron microprobe from shallow boreholes in the abandoned meander Certak near Uherské Hradiste. A detailed study of subfossil fish confirms extremely rapid changes in the chemical composition of hydroxylapatite during very early diagenetic processes in the first 2 years, which does not change significantly in the bottom of the boreholes about 25 years old. While there is an enormous increase in Na, K, Ba and Sr, Fe and Mn, there is a major decrease in Mg. The fish scales from 70 to 78 cm (6–8 years old) are approaching already the level of francolite-type hydroxylapatite. The high Na content indicates carbonate substitutions for OH or PO4 group. Consequently, environmental interpretations based on the chemistry of fossil hydroxylapatites require extreme caution. In recent fish scales, the element concentrations reflect not only the position in the trophic pyramid but also a complicated interplay of the diet, physiological processes and environmental contamination.

Keywords

Hydroxylapatite Fish scale LA-ICP-MS Diagenesis Trophic web Abandoned meander Morava River 

References

  1. Adámek Z, Sukop I, Moreno Rendón P, Kouril J (2003) Food competition between 2+ tench(Tinca tinca L.), common carp (Cyprinus carpio L.) and bigmouth buffalo (Ictiobus cyprinellus Val.) in pond polyculture. J Appl Ichthyol 19:165–169. doi:10.1046/j.1439-0426.2003.00467.x CrossRefGoogle Scholar
  2. Admassu W, Breese T (1999) Feasibility of using natural fishbone apatite as a substitute for hydroxyapatite in remediating aqueous heavy metals. J Hazard Mater 69(2):187–196. doi:10.1016/S0304-3894(99)00102-8 CrossRefGoogle Scholar
  3. Bábek O, Hilscherová K, Nehyba S, Zeman J, Famera M, Francu J, Holoubek I, Machát J, Klánová J (2008) Contamination history of suspended river sediments accumulated in oxbow lake for the last 25 years; River Morava (Danube Catchment Area), Czech Republic. J Soils Sediments 8:165–176. doi:10.1007/s11368-008-0002-8 CrossRefGoogle Scholar
  4. Balter V, Lécuyer C (2004) Determination of Sr and Ba partition coefficients between apatite and water from 5°C to 60°C: a potential new thermometer for aquatic paleoenvironments. Geochim Cosmochim Acta 68:423–432. doi:10.1016/S0016-7037(03)00453-8 CrossRefGoogle Scholar
  5. Basu A, Rahaman MS, Mustafiz S, Islam MR (2007) Batch studies of lread adsorption from multicomponent aqueous solution onto Atlantic cod fish scale (Gadus morhua) substrate. J Environ Eng Sci 6:455–462. doi:10.1139/S06-070 CrossRefGoogle Scholar
  6. Benícek L (1981) Dredging of abandoned meander of the River Morava—Čerták. Technical report of building approval from 05 Dec 1981, Povodí Moravy s.p., Uherské HradisteGoogle Scholar
  7. Berntssen MHG, Waagbo R, Toften H, Lundebye AK (2003) Effects of dietary cadmium on calcium homeostasis, Ca mobilization and bone deformities in Atlantic salmon (Salmo salar L.) parr. Aquac Nutr 9:175–183. doi:10.1046/j.1365-2095.2003.00245.x CrossRefGoogle Scholar
  8. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1996) Rietveld structure refinements of calcium hydroxylapatite containing magnesium. Acta Crystallogr 52:87–92CrossRefGoogle Scholar
  9. Bijvelds MJC, Flik G, Wendelaar Bonga SE (1997) Mineral balance in Oreochromis mossambicus: dependence on magnesium in diet and water. Fish Physiol Biochem 16:323–331. doi:10.1023/A:1007727819382 CrossRefGoogle Scholar
  10. Bijvelds MJC, Van der Velden JA, Kolar ZI, Flik G (1998) Magnesium transport in freshwater teleosts. J Exp Biol 201:1981–1990Google Scholar
  11. Borga K, Campbell L, Gabrielsen GW, Norstrom RJ, Muir DCG, Fisk AT (2006) Regional and species specific bioaccumulation of major and trace elements in arctic seabirds. Environ Toxicol Chem 25:2927–2936. doi:10.1897/05-574R1.1 CrossRefGoogle Scholar
  12. Bostick WD, Stevenson RJ, Harris LA, Peery D, Hall JR, Shoemaker JL, Jarabek RJ, Munday EB (2003) Use of apatite for chemical stabilization of subsurface contaminants. Tech Rep submitted to U.S. Department of Energy, National Energy Technology LaboratoryGoogle Scholar
  13. Brink EJ, Beynen AC, Dekker PR, van Beresteijn EC, van der Meer R (1992) Interaction of calcium and phosphate decreases ileal magnesium solubility and apparent magnesium absorption in rats. J Nutr 122:580–586Google Scholar
  14. Brönmark C (1994) Effects of tench and perch on interactions in a fresh-water, benthic food-chain. Ecology 75:1818–1828. doi:10.2307/1939640 CrossRefGoogle Scholar
  15. Burton JH, Price TD (1990) The ratio of barium to strontium as a paleodietary indicator of consumption of marine resources. J Archaeol Sci 17:547–557. doi:10.1016/0305-4403(90)90035-4 CrossRefGoogle Scholar
  16. Burton JH, Price TD, Middleton WD (1999) Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. J Archaeol Sci 26:609–616. doi:10.1006/jasc.1998.0378 CrossRefGoogle Scholar
  17. Christoffersen J, Christoffersen MR, Kolthoff N, Barenholdt O (1997) Effects of strontium ions on growth and dissolution of hydroxylapatite and on bone mineral detection. Bone 20:47–54. doi:10.1016/S8756-3282(96)00316-X CrossRefGoogle Scholar
  18. Domingo L, Lopez-Martinez N, Soler-Gijon R, Grimes ST (2007) A multi-proxy geochemical investigation of the early Paleocene (Danian) continental palaeoclimate at the Fontllonga-3 site (South Central Pyrenees, Spain). Palaeogeogr Palaeoclimatol 256(1–2):71–85. doi:10.1016/j.palaeo.2007.09.009 CrossRefGoogle Scholar
  19. Eanes EA, Gillessen IH, Posmer AS (1965) Intermediate stages in the precipitation of hydroxyapatite. Nature 208:365–367. doi:10.1038/208365a0 CrossRefGoogle Scholar
  20. El Feki H, Savariault JM, Ben Salah A, Jemal M (2000) Sodium and carbonate distribution in substituted calcium hydroxyapatite. Solid State Sci 2:577–586. doi:10.1016/S1293-2558(00)01059-1 CrossRefGoogle Scholar
  21. Elias RW, Hirao Y, Patterson CC (1982) The circumvention of the natural biopurification along nutrient pathways by atmospheric inputs of industrial lead. Geochim Cosmochim Acta 46:2561–2580. doi:10.1016/0016-7037(82)90378-7 CrossRefGoogle Scholar
  22. Elliot JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, AmsterdamGoogle Scholar
  23. Elliott JC (2002) Calcium phosphate biominerals. Rev Mineral Geochem 48:427–454. doi:10.2138/rmg.2002.48.11 CrossRefGoogle Scholar
  24. Ezzo J (1992) A test of diet versus diagenesis at Ventana Cave, Arizone. J Archaeol Sci 19:23–37. doi:10.1016/0305-4403(92)90004-M CrossRefGoogle Scholar
  25. Ezzo J (1994) Zinc as a paleodietary indicator: an issue of theoretical validity in bone-chemistry analysis. Am Antiq 59(4):606–621. doi:10.2307/282336 CrossRefGoogle Scholar
  26. Fleet L, Liu X (2007) Coupled substitution of type A and B carbonate in sodium-bearing apatite. Biomaterials 28(6):916–926. doi:10.1016/j.biomaterials.2006.11.003 CrossRefGoogle Scholar
  27. Fouda MM (1979) Studies on scale structure in the common goby Pomatoschistus microps Kroyer. J Fish Biol 15:173–183. doi:10.1111/j.1095-8649.1979.tb03581.x CrossRefGoogle Scholar
  28. Francalacci P, Borgognini Tarli S (1988) Multielementary analysis of trace elements and preliminaryresults on stable isotopes in two italian prehistoric sites. Methodological aspects. In: Grupe G, Herrmann B (eds) Trace elements in environmental history. Springer, Berlin, pp 41–52Google Scholar
  29. Gaschen AAM, Dobeli M, Markwitz A, Barry B, Ulrich-Bochsler S, Krahenbuhl U (2008) Restrictions on fluorine depth profiling for exposure age dating in archaeological bones. J Archaeol Sci 35(3):535–552. doi:10.1016/j.jas.2007.05.004 CrossRefGoogle Scholar
  30. Gibson IR, Bonfield W (2002) Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res 59:697–708. doi:10.1002/jbm.10044 CrossRefGoogle Scholar
  31. Gibson IR, Best SM, Bonfield W (1999) Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res 44:422–428. doi:10.1002/(SICI)1097-4636(19990315)44:4<422::AID-JBM8>3.0.CO;2-# CrossRefGoogle Scholar
  32. Gilbert RI (1975) Trace element analyses of three skeletal Amerindian populations at Dickson mounds. Dissertation, University of Massachusetts, AmherstGoogle Scholar
  33. Glover CN, Bury NR, Hogstrand C (2004) Intestinal zinc uptake in freshwater rainbow trout: evidence for apical pathways associated with potassium efflux and modified by calcium. Biochim Biophys Acta 1663:214–221CrossRefGoogle Scholar
  34. Goodwin MB, Grant PG, Bench G, Holroyd PA (2007) Elemental composition and diagenetic alteration of dinosaur bone: distinguishing micron-scale spatial and compositional heterogeneity using PIXE. Palaeogeogr Palaeoclimatol 253(3–4):458–476. doi:10.1016/j.palaeo.2007.06.017 CrossRefGoogle Scholar
  35. Grandjean P, Albarede F (1989) Ion probe measurement of rare earth elements in biogenic phosphates. Geochim Cosmochim Acta 53:3179–3183. doi:10.1016/0016-7037(89)90097-5 CrossRefGoogle Scholar
  36. Grandjean-Lecuyer P, Feist R, Albarede F (1993) Rare earth elements in old biogenic apatites. Geochim Cosmochim Acta 57:2507–2514. doi:10.1016/0016-7037(93)90413-Q CrossRefGoogle Scholar
  37. Greene EF, Tauch S, Webb E, Amarasiriwardena D (2004) Application of diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) for the identification of potential diagenesis and crystallinity changes in teeth. Microchem J 76:141–149. doi:10.1016/j.microc.2003.11.006 CrossRefGoogle Scholar
  38. Halden NM, Mejia SR, Babaluk JA, Reist JD, Kristofferson AH, Campbell JL, Teesdale WJ (2000) Oscillatory zinc distribution in Arctic char (Salvelinus alpinus) otoliths: the result of biology or environment? Fish Res 46:289–298. doi:10.1016/S0165-7836(00)00154-5 CrossRefGoogle Scholar
  39. Helfman GS, Collette BB, Facey DE (1997) The diversity of fishes. Blackwell Science, OxfordGoogle Scholar
  40. Hochstein J, MacFadden BJ (2006) Quantification of diagenesis in Cenozoic sharks: elemental and mineralogical changes. Geochim Cosmochim Acta 70:4921–4932. doi:10.1016/j.gca.2006.07.009 CrossRefGoogle Scholar
  41. Holá M, Kalvoda J, Babek O, Brzobohaty R, Holoubek I, Kanicky V, Skoda R (2009) LA-ICP-MS heavy metal analyses of fish scales from sediments of the Oxbow Lake Certak of the Morava River (Czech Republic). Environ Geol. doi:10.1007/s00254-008-1501-z (in press)
  42. Howe PD, Malcolm HM, Dobson S (2004) Manganese and its compounds: environmental aspects. United Nations Environment Programme. International Labour Organization and World Health Organization, Geneva. p 63Google Scholar
  43. Hubert JF, Panish PT, Chure DJ, Prostak KS (1996) Chemistry, microstructure, petrology, and diagenetic model of Jurassic dinosaur bones, dinosaur national monument, Utah. J Sediment Res 66:531–547Google Scholar
  44. Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mannc S (2003) Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J Struct Biol 142:327–333. doi:10.1016/S1047-8477(03)00053-4 CrossRefGoogle Scholar
  45. Johnsson K (1997) Chemical dating of bones based on diagenetic changes in bone apatite. J Archaeol Sci 24:431–437. doi:10.1006/jasc.1996.0127 CrossRefGoogle Scholar
  46. Katzenberg MA, Harrison RG (1997) What’s in a bone? Recent advances in archaeological bone chemistry. J Archaeol Res 5(3):265–293. doi:10.1007/BF02229154 CrossRefGoogle Scholar
  47. Kihara M, Kiryu K, Sakata T (2007) Dietary lactosucrose affects calcium content in scales of juvenile red sea bream Pagrus major under artificial rearing. Aquac Sci 55(2):271–278Google Scholar
  48. Knox S, Kaplan DI, Paller MH (2006) Phosphate sources and their suitability for remediation of contaminated soils. Sci Total Environ 357(1–3):271–279. doi:10.1016/j.scitotenv.2005.07.014 Google Scholar
  49. Kohn MJ, Schoeninger MJ, Barker WW (1999) Altered states: effects of diagenesis on fossil tooth chemistry. Geochim Cosmochim Acta 63:2737–2747. doi:10.1016/S0016-7037(99)00208-2 CrossRefGoogle Scholar
  50. Lambert JB, Weydert-Homeyer JM (1993) The fundamental relationship between ancient diet and the inorganic constituents of bone as derived from feeding experiments. Archaeometry 35:279–294. doi:10.1111/j.1475-4754.1993.tb01043.x CrossRefGoogle Scholar
  51. Lee-Thorp JA (2000) Preservation of biogenic carbon isotope signals in Plio-Pleistocene bone and tooth mineral. In: Ambrose S, Katzenberg KA (eds) Biogeochemical approaches to paleodietary analysis. Plenum Press, New YorkGoogle Scholar
  52. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Karger AG, BaselGoogle Scholar
  53. LeGeros RZ, Suga S (1980) Crystallographic nature of fluoride in enameloids of fish. Calcif Tissue Int 32(1):169–174. doi:10.1007/BF02408536 CrossRefGoogle Scholar
  54. LeGeros RZ, Trautz O, LeGeros JP, Klein E (1968) Carbonate substitution in apatite structure. Bull Soc Chim Fr 4:1712–1714Google Scholar
  55. Ma QY, Traina SJ, Logan TJ, Ryan JA (1993) In situ lead immobilization by apatite. Environ Sci Technol 27:1803–1810. doi:10.1021/es00046a007 CrossRefGoogle Scholar
  56. Ma QY, Logan TJ, Traina SJ, Ryan JA (1994) Effect of aqueous Al, Cd, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ Sci Technol 28:1219–1228. doi:10.1021/es00056a007 CrossRefGoogle Scholar
  57. Martínez-García MJ, Moreno JM, Moreno-Clavel J, Vergara N, García-Sánchez A, Guillamón A, Porti M, Moreno-Grau S (2005) Heavy metals in human bones in different historical epochs. Sci Total Environ 348:51–72. doi:10.1016/j.scitotenv.2004.12.075 CrossRefGoogle Scholar
  58. Mayer I, Schlam R, Featherstone JD (1997) Magnesium-containing carbonate apatites. J Inorg Biochem 66(1):1–6. doi:10.1016/S0162-0134(96)00145-6 CrossRefGoogle Scholar
  59. Miret S, Simpson RJ, McKie AT (2003) Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr 23:283–301. doi:10.1146/annurev.nutr.23.011702.073139 CrossRefGoogle Scholar
  60. Monson ER (1988) Iron and absorption: dietary factors which impact iron bioavailability. J Am Diet Assoc 88:786–790Google Scholar
  61. Mustafiz S (2002) A novel method for heavy metal removal from aqueous streams. NASc thesis, Department of Civil Engineering, Dalhousie University, Halifax, NS, CanadaGoogle Scholar
  62. Nadeem R, Ansari TM, Khalid AM (2008) Fourier Transform Infrared Spectroscopic characterization and optimization of Pb(II) biosorption by fish (Labeo rohita) scales. J Hazard Mater 156(1–3):64–73. doi:10.1016/j.jhazmat.2007.11.124 CrossRefGoogle Scholar
  63. Narasaraju TSB, Phebe DE (1996) Some physico-chemical aspects of hydroxylapatite. J Mater Sci 31:1–21. doi:10.1007/BF00355120 CrossRefGoogle Scholar
  64. Nemliher J, Kallaste T, Puura I (1997) Hydroxyapatite varieties in recent fish scales. Proc Estonian Acad Sci Geol 46:187–196Google Scholar
  65. Nemliher JG, Baturin GN, Kallaste TE, Murdmaa IO (2004) Transformation of hydroxyapatite of bone phosphate from the ocean bottom during fossilization. Lithol Min Resour 39:468–479. doi:10.1023/B:LIMI.0000040736.62014.2d CrossRefGoogle Scholar
  66. Neuman WF, Mulryan BJ (1971) Synthetic hydroxyapetite crystals IV. Magnesium incorporation. Calcif Tissue Res 7:133–138. doi:10.1007/BF02062601 CrossRefGoogle Scholar
  67. Nishimoto SK, Waite JH, Nishimoto M, Kriwacki RW (2003) Structure, activity, and distribution of fish osteocalcin. J Biol Chem 278(14):11843–11848. doi:10.1074/jbc.M211449200 CrossRefGoogle Scholar
  68. Okayama S, Akao M, Nakamura S, Shin Y, Higashikata M, Aoki H (1991) The mechanical properties and solubility of strontium-substituted hydroxylapatite. Biomed Mater Eng 1:11–17Google Scholar
  69. Pan Y, Fleet ME (2002) Compositions of the apatite group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem 48:13–49. doi:10.2138/rmg.2002.48.2 CrossRefGoogle Scholar
  70. Parker RB, Toots H (1972) Hollandite-coronadite in fossil bone. Am Mineral 57:1527–1530Google Scholar
  71. Pate FD, Hutton JT, Norrish K (1989) Ionic exchange between soil solution and bone: toward a predictive model. Appl Geochem 4:303–316. doi:10.1016/0883-2927(89)90034-6 CrossRefGoogle Scholar
  72. Peroos S, Du Z, deLeeuw NH (2006) A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxyapatite. Biomaterials 27:2150–2161. doi:10.1016/j.biomaterials.2005.09.025 CrossRefGoogle Scholar
  73. Petridis D (1990) The influence of grass carp on habitat structure and its subsequent effect on the diet of tench. J Fish Biol 36(4):533–544. doi:10.1111/j.1095-8649.1990.tb03555.x CrossRefGoogle Scholar
  74. Pfretzschner HU (1998) Fruehdiagenetische Prozesse bei der Fossilisation von Knochen. Neues Jahrb Geol P-A 210:369–397Google Scholar
  75. Pfretzschner HU (2001) Pyrite in fossil bone. Neues Jahrb Geol P-A 220:1–23Google Scholar
  76. Pfretzschner HU (2004) Fossilization of Haversian bone in aquatic environments. C R Palevol 3(6–7):605–616. doi:10.1016/j.crpv.2004.07.006 CrossRefGoogle Scholar
  77. Posner AS, Blumenthal NC, Betts F (1984) Chemistry and structure of precipitated hydroxyapatites. In: Nriagu JO, Moore PB (eds) Phosphate minerals. Springer Verlag, London, pp 330–350Google Scholar
  78. Pouchou JL, Pichoir F (1985) “PAP”({phi}-{rho}- Z) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam Analysis. San Francisco Press, San Francisco, pp 104–106Google Scholar
  79. Reiche I, Favre-Quattropani L, Vignaud C, Bocherens H, Charlet L, Menu M (2003) A multi-analytical study of bone diagenesis: the Neolithic site of Bercy (Paris, France). Meas Sci Technol 14(9):1608–1619. doi:10.1088/0957-0233/14/9/312 CrossRefGoogle Scholar
  80. Reynard B, Lécuyer C, Grandjean P (1999) Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem Geol 155:233–241. doi:10.1016/S0009-2541(98)00169-7 CrossRefGoogle Scholar
  81. Rotllant J, Redruello B, Guerreiro PM, Fernandes H, Canario AV, Power DM (2005) Calcium mobilization from fish scales is mediated by parathyroid hormone related protein via the parathyroid hormone type 1 receptor. Regul Pept 132:33–40. doi:10.1016/j.regpep.2005.08.004 CrossRefGoogle Scholar
  82. Sanchez-Morito N, Planells E, Aranda P, Llopis J (1999) Magnesium-manganese interactions caused by magnesium deficiency in rats. J Am Coll Nutr 18(5):475–480Google Scholar
  83. Sauer GR, Watabe N (1988) The effects of heavy metals and metabolic inhibitors on calcium uptake by gills and scales of Fundulus heteroclitus in vitro. Comp Biochem Physiol 91C:473–478Google Scholar
  84. Sealy JC, Sillen A (1988) Sr and Sr/Ca in marine and terrestrial foodwebs in the Southwestern Cape, South Africa. J Archaeol Sci 15:425–438. doi:10.1016/0305-4403(88)90040-4 CrossRefGoogle Scholar
  85. Seshaya RV, Ambujarai P, Kalyani M (1963) Amino acid composition of ichthylepidin from fish scales. In: Ramachandran GN (ed) Aspects of protein structure. Academic Press, LondonGoogle Scholar
  86. Shashkova IL, Ratko AI, Kitikova NV (1999) Removal of heavy metal ions from aqueous solutions by alkaline-earth metal phosphates. Colloids Surf A Physicochem Eng Asp 160:207–215. doi:10.1016/S0927-7757(99)00193-4 CrossRefGoogle Scholar
  87. Sheha RR (2007) Sorption behavior of Zn(II) ions on synthesized hydroxyapatites. J Colloid Interface Sci 310:18–26. doi:10.1016/j.jcis.2007.01.047 CrossRefGoogle Scholar
  88. Sillen A, Kavanagh M (1982) Strontium and paleodietary research: a review. Yearb Phys Anthropol 25:67–90. doi:10.1002/ajpa.1330250505 CrossRefGoogle Scholar
  89. Sillen A, Sealy JC, van der Merw NJ (1989) Chemistry and paleodietary research: no more easy answers. Am Antiq 54:504–512. doi:10.2307/280778 CrossRefGoogle Scholar
  90. Sponheimer M, Lee-Thorp MA (2006) Enamel diagenesis at South African Australopith sites: implications for paleoecological reconstruction with trace elements. Geochim Cosmochim Acta 70:1644–1654. doi:10.1016/j.gca.2005.12.022 CrossRefGoogle Scholar
  91. Stokes PM, Campbell PGC, Schroeder WH, Trick C, France RL, Pockett KJ, Lazertz J, Speyer B, Hanna H, Donaldson J (1988) Manganese in the Canadian environment. National Research Council Canada (NRCC 26193), 177 ppGoogle Scholar
  92. Sutter B, Ming DW, Clearfield A, Hossnerc LR (2003) Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites. Soil Sci Soc Am J 67:1935–1942Google Scholar
  93. Suzuki T, Hatsushika T, Miyake M (1982) Synthetic hydroxyapatites as inorganic cation exchangers: 2. J Chem Soc Faraday Trans I 78:3605–3611. doi:10.1039/f19827803605 CrossRefGoogle Scholar
  94. Tanizawa Y, Sawamura K, Suzuki T (1990) Reaction characteristics of dental and synthetic apatites with Fe2 and Fe3 ions. J Chem Soc Faraday Trans I 86:1071–1075. doi:10.1039/ft9908601071 CrossRefGoogle Scholar
  95. Tapiero H, Gate L, Tew KD (2001) Iron: deficiencies and requirements. Biomed Pharmacother 55:324–332. doi:10.1016/S0753-3322(01)00067-1 CrossRefGoogle Scholar
  96. Torell P (1988) Iron and dental caries. Swed Dent J 12(3):113–124Google Scholar
  97. Trancho GJ, Robledo B (2003) Human skeletal remains from the mesolithic site of Sheikh Mustafa (Central Sudan). In: Fernándes VM (ed) An anthropometric and palaeodietary analysis. The Blue Nile Project. Holocene Archaeology in Central Sudan, Complutum, vol 14, Madrid. pp 401–408Google Scholar
  98. Trueman CN (1999) Rare earth element geochemistry and taphonomy of terrestrial vertebrate assemblages. Palaios 14:555–568. doi:10.2307/3515313 CrossRefGoogle Scholar
  99. Trueman CN, Tuross N (2002) Trace elements in recent and fossil bone apatite. In: Kohn MJ, Rakovan JF, Hughes JM (eds) Phosphates: geochemical, geobiological and material importance. Rev Mineral Geochem 48. Mineralogical Society of America, Washington, pp 489–521Google Scholar
  100. Wakamura M, Kandori K, Ishikawa T (2000) Surface structure and composition of calcium hydroxyapatites substituted with Al(III), La(III) and Fe(III) ions. Colloids Surf A Physicochem Eng Asp 164:297–305. doi:10.1016/S0927-7757(99)00384-2 CrossRefGoogle Scholar
  101. Wells BK, Thorrold SR, Jones CM (2000) Geographic variation in trace element composition of juvenile weakfish scales. Trans Am Fish Soc 129:889–900. doi:10.1577/1548-8659(2000)129<0889:GVITEC>2.3.CO;2 CrossRefGoogle Scholar
  102. Wright JV, Conca JL (2000) Stabilization and remediation of soil, water and wastes contaminated with metals using fish bones and hard parts. US Patent 6217775, 2000Google Scholar
  103. Xu H, Yang L, Wang P, Liu Y, Peng M (2007) Removal mechanism of aqueous lead by a novel eco-material: carbonate hydroxyapatite. J Mar Sci Technol 23(3):417–422Google Scholar
  104. Yasukawa A, Yokoyama T, Kandori K, Ishikawa T (2002) Ion-exchangeability of calcium hydroxyapatite and magnesium-calcium hydroxyapatite solid solution. Nippon Kagakkai Koen Yokoshu 81(1):392Google Scholar
  105. Yasukawa A, Yokoyama T, Kandori K, Ishikawa T (2007) Reaction of calcium ydroxyapatite with Cd2+ and Pb2+ ions. Colloid Surf A 299:203–208. doi:10.1016/j.colsurfa.2006.11.042 CrossRefGoogle Scholar
  106. Zapata J, Perez-Sirvent C, Martinez-Sanchez MJ, Tovar P (2006) Diagenesis, not biogenesis: two late roman skeletal examples. Sci Total Environ 369(1–3):357–368. doi:10.1016/j.scitotenv.2006.05.021 Google Scholar
  107. Zipkin I, Posner AS, Eanes ED (1962) The effect of fluoride on the X-ray-diffraction pattern of the apatite of human bone. Biochim Biophys Acta 59:255–258. doi:10.1016/0006-3002(62)90730-8 CrossRefGoogle Scholar
  108. Zylberberg L (2004) New data on bone matrix and its proteins. C R Palevol 3:591–604. doi:10.1016/j.crpv.2004.07.012 CrossRefGoogle Scholar
  109. Zylberberg L, Nicols G (1982) Ultrastructure of scales in a teleost (Carassius auratus L.) after use of rapid freeze-fixation and freeze-substitution. Cell Tissue Res 223:349–367. doi:10.1007/BF01258495 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. Kalvoda
    • 1
  • M. Novák
    • 1
  • O. Bábek
    • 1
    • 4
  • R. Brzobohatý
    • 1
  • M. Holá
    • 2
  • I. Holoubek
    • 3
  • V. Kanický
    • 2
  • R. Škoda
    • 1
  1. 1.Department of Geological SciencesMasaryk University of BrnoBrnoCzech Republic
  2. 2.Department of ChemistryMasaryk UniversityBrnoCzech Republic
  3. 3.Research Centre for Environmental Chemistry and EcotoxicologyMasaryk University of BrnoBrnoCzech Republic
  4. 4.Department of GeologyPalacky UniversityOlomoucCzech Republic

Personalised recommendations