, Volume 94, Issue 1, pp 63–80 | Cite as

Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico

  • Julie C. Pett-Ridge


The input of phosphorus (P) through mineral aerosol dust deposition may be an important component of nutrient dynamics in tropical forest ecosystems. A new dust deposition calculation is used to construct a broad analysis of the importance of dust-derived P to the P budget of a montane wet tropical forest in the Luquillo Mountains of Puerto Rico. The dust deposition calculation used here takes advantage of an internal geochemical signal (Sr isotope mass balance) to provide a spatially integrated longer-term average dust deposition flux. Dust inputs of P (0.23 ± 0.08 kg ha−1 year−1) are compared with watershed-average inputs of P to the soil through the conversion of underlying saprolite into soil (between 0.07 and 0.19 kg ha−1 year−1), and with watershed-average losses of soil P through leaching (between 0.02 and 0.14 kg ha−1 year−1) and erosion (between 0.04 and 1.38 kg ha−1 year−1). The similar magnitude of dust-derived P inputs to that of other fluxes indicates that dust is an important component of the soil and biomass P budget in this ecosystem. Dust-derived inputs of P alone are capable of completely replacing the total soil and biomass P pool on a timescale of between 2.8 ka and 7.0 ka, less than both the average soil residence time (~15 ka) and the average landslide recurrence interval (~10 ka).


Luquillo Mountains Dust Nutrient cycling Phosphorus 



Art Johnson and Louis Derry provided helpful comments on an earlier version of this manuscript. Natalie Mahowald is thanked for useful discussions about dust fluxes. This manuscript benefited from the thoughtful comments of two anonymous reviewers. The author was supported a U.K. Natural Environment Research Council Fellowship.


  1. Artaxo P et al (1998) Large-scale aerosol source apportionment in Amazonia. J Geophys Res Atmos 103(D24):31837–31847. doi: 10.1029/98JD02346 CrossRefGoogle Scholar
  2. Avila A, Alarcon M, Queralt I (1998) The chemical composition of dust transported in red rains—its contribution to the biogeochemical cycle of a Holm oak forest in Catalonia (Spain). Atmos Environ 32(2):179–191. doi: 10.1016/S1352-2310(97)00286-0 CrossRefGoogle Scholar
  3. Baker AR, French M, Linge KL (2006a) Trends in aerosol nutrient solubility along a west-east transect of the Saharan dust plume. Geophys Res Lett 33(7):L07805CrossRefGoogle Scholar
  4. Baker AR, Jickells TD, Witt M, Linge KL (2006b) Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar Chem 98(1):43–58. doi: 10.1016/j.marchem.2005.06.004 CrossRefGoogle Scholar
  5. Bergametti G, Gomes L, Coudegaussen G, Rognon P, Lecoustumer MN (1989) African dust observed over Canary Islands: source regions identification and transport pattern for some summer situations. J Geophys Res Atmos 94(D12):14855–14864. doi: 10.1029/JD094iD12p14855 CrossRefGoogle Scholar
  6. Bern CR, Townsend AR, Farmer GL (2005) Unexpected dominance of parent-material strontium in a tropical forest on highly weathered soils. Ecology 86(3):626–632. doi: 10.1890/03-0766 CrossRefGoogle Scholar
  7. Bhatt MP, McDowell WH (2007) Controls on major solutes within the drainage network of a rapidly weathering tropical watershed. Water Resour Res 43:W11402. doi: 10.1029/2007WR005915 CrossRefGoogle Scholar
  8. Biscaye PE, Chesselet R, Prospero JM (1974) Rb-Sr, 87Sr/86Sr isotope system as an index of provenance of continental dusts in the open Atlantic Ocean. J Rech Atmos 8:819–829Google Scholar
  9. Brown S, Lugo AE, Silander S, Liegel L (1983) Research history and opportunities in the Luquillo Experimental Forest. USDA, Forest Service General Technical Report S0-44, Southern Forest Experiment Station, New Orleans, LouisianaGoogle Scholar
  10. Brown ET, Stallard RF, Larsen MC, Raisbeck GM, Yiou F (1995) Denudation rates determined from the accumulation of in situ produced 10Be in the Luquillo Experimental Forest, Puerto Rico. Earth Planet Sci Lett 129:193–202. doi: 10.1016/0012-821X(94)00249-X CrossRefGoogle Scholar
  11. Bruijnzeel LA (1989) Nutrient content of bulk precipitation in south-central Java, Indonesia. J Trop Ecol 5:187–202Google Scholar
  12. Bruijnzeel LA (1991) Nutrient input output budgets of tropical forest ecosystems: a review. J Trop Ecol 7:1–24Google Scholar
  13. Buss HL, Sak PB, Webb SM, Brantley SL (2008) Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: coupling oxidation, dissolution, and fracturing. Geochim Cosmochim Acta 72:4488–4507. doi: 10.1016/j.gca.2008.06.020 CrossRefGoogle Scholar
  14. Carbo P, Krom MD, Homoky WB, Benning LG, Herut B (2005) Impact of atmospheric deposition on N and P geochemistry in the southeastern Levantine basin. Deep Sea Res Part II Top Stud Oceanogr 52(22–23):3041–3053. doi: 10.1016/j.dsr2.2005.08.014 CrossRefGoogle Scholar
  15. Chacon N, Silver WL, Dubinsky EA, Cusack DF (2006) Iron reduction and soil phosphorus solubilization in humid tropical forests soils: the roles of labile carbon pools and an electron shuttle compound. Biogeochemistry 78(1):67–84. doi: 10.1007/s10533-005-2343-3 CrossRefGoogle Scholar
  16. Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397(6719):491–497. doi: 10.1038/17276 CrossRefGoogle Scholar
  17. Chestnut TJ, Zarin DJ, McDowell WH, Keller M (1999) A nitrogen budget for late-successional hillslope tabonuco forest, Puerto Rico. Biogeochemistry 46(1–3):85–108. doi: 10.1007/BF01007575 Google Scholar
  18. Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87(2):492–503. doi: 10.1890/05-0525 CrossRefGoogle Scholar
  19. Cox SB, Willig MR, Scatena FN (2002) Variation in nutrient characteristics of surface soils from the Luquillo Experimental Forest of Puerto Rico: a multivariate perspective. Plant Soil 247(2):189–198. doi: 10.1023/A:1021488313783 CrossRefGoogle Scholar
  20. Crews TE et al (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76(5):1407–1424. doi: 10.2307/1938144 CrossRefGoogle Scholar
  21. Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64(3–4):197–214. doi: 10.1016/0016-7061(94)00023-4 CrossRefGoogle Scholar
  22. Dalling JW, Tanner EVJ (1995) An experimental study of regeneration on landslides in montane rain forest in Jamaica. J Ecol 83(1):55–64. doi: 10.2307/2261150 CrossRefGoogle Scholar
  23. De Longe M, D’Odorico P, Lawrence D (2008) Feedbacks between phosphorus deposition and canopy cover: the emergence of multiple stable states in tropical dry forests. Glob Change Biol 14(1):154–160Google Scholar
  24. Eijsink LM, Krom MD, Herut B (2000) Speciation and burial flux of phosphorus in the surface sediments of the Eastern Mediterranean. Am J Sci 300(6):483–503. doi: 10.2475/ajs.300.6.483 CrossRefGoogle Scholar
  25. Elser JJ et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi: 10.1111/j.1461-0248.2007.01113.x CrossRefGoogle Scholar
  26. Fetcher N et al (1996) Responses of tropical plants to nutrients and light on a landslide in Puerto Rico. J Ecol 84(3):331–341. doi: 10.2307/2261196 CrossRefGoogle Scholar
  27. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240. doi: 10.1126/science.281.5374.237 CrossRefGoogle Scholar
  28. Filippelli GM, Souch C (1999) Effects of climate and landscape development on the terrestrial phosphorus cycle. Geology 27(2):171–174. doi: 10.1130/0091-7613(1999)027≤0171:EOCALD≥2.3.CO;2 CrossRefGoogle Scholar
  29. Fletcher RC, Buss HL, Brantley SL (2006) A spheroidal weathering model coupling porewater chemistry to soil thickness during steady-state denudation. Earth Planet Sci Lett 244:444–457. doi: 10.1016/j.epsl.2006.01.055 CrossRefGoogle Scholar
  30. Formenti P et al (2001) Saharan dust in Brazil and Suriname during the large-scale biosphere-atmosphere experiment in Amazonia (LBA)—cooperative LBA regional experiment (CLAIRE) in March 1998. J Geophys Res Atmos 106(D14):14919–14934. doi: 10.1029/2000JD900827 CrossRefGoogle Scholar
  31. Frizano J, Johnson AH, Vann DR, Scatena FN (2002) Soil phosphorus fractionation during forest development on landslide scars in the Luquillo Mountains, Puerto Rico. Biotropica 34(1):17–26Google Scholar
  32. Galloway JN et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226. doi: 10.1007/s10533-004-0370-0 CrossRefGoogle Scholar
  33. Glaccum RA, Prospero JM (1980) Saharan aerosols over the tropical North Atlantic: mineralogy. Mar Geol 37(3–4):295–321. doi: 10.1016/0025-3227(80)90107-3 CrossRefGoogle Scholar
  34. Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56(1–4):179–204. doi: 10.1016/S0012-8252(01)00067-8 CrossRefGoogle Scholar
  35. Graham WF, Duce RA (1979) Atmospheric pathways of the phosphorus cycle. Geochim Cosmochim Acta 43(8):1195–1208. doi: 10.1016/0016-7037(79)90112-1 CrossRefGoogle Scholar
  36. Graham WF, Duce RA (1981) Atmospheric input of phosphorus to remote tropical islands. Pac Sci 35(3):241–255Google Scholar
  37. Grousset FE, Biscaye PE, Zindler A, Prospero J, Chester R (1988) Neodymium isotopes as tracers in marine sediments and aerosols: North Atlantic. Earth Planet Sci Lett 87(4):367–378. doi: 10.1016/0012-821X(88)90001-5 CrossRefGoogle Scholar
  38. Grousset FE, Rognon P, Coudegaussen G, Pedemay P (1992) Origins of peri-Saharan dust deposits traced by their Nd and Sr isotopic composition. Palaeogeogr Palaeoclimatol Palaeoecol 93(3–4):203–212. doi: 10.1016/0031-0182(92)90097-O CrossRefGoogle Scholar
  39. Grousset FE et al (1998) Saharan wind regimes traced by the Sr–Nd isotopic composition of subtropical Atlantic sediments: last glacial maximum vs today. Quat Sci Rev 17(4–5):395–409. doi: 10.1016/S0277-3791(97)00048-6 CrossRefGoogle Scholar
  40. Guariguata MR (1990) Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico. J Ecol 78(3):814–832. doi: 10.2307/2260901 CrossRefGoogle Scholar
  41. Hamdan J, Burnham CP (1996) The contribution of nutrients from parent material in three deeply weathered soils of Peninsular Malaysia. Geoderma 74(3–4):219–233. doi: 10.1016/S0016-7061(96)00062-6 CrossRefGoogle Scholar
  42. Heartsill-Scalley T, Scatena FN, Estrada C, McDowell WH, Lugo AE (2007) Disturbance and long-term patterns of rainfall and throughfall nutrient fluxes in a subtropical wet forest in Puerto Rico. J Hydrol (Amst) 333(2–4):472–485. doi: 10.1016/j.jhydrol.2006.09.019 CrossRefGoogle Scholar
  43. Herbert DA, Fownes JH (1995) Phosphorus limitation of forest leaf area and net primary production on a highly weathered soil. Biogeochemistry 29(3):223–235. doi: 10.1007/BF02186049 CrossRefGoogle Scholar
  44. Herut B, Zohary T, Robarts RD, Kress N (1999) Adsorption of dissolved phosphate onto loess particles in surface and deep Eastern Mediterranean water. Mar Chem 64(4):253–265. doi: 10.1016/S0304-4203(98)00073-5 CrossRefGoogle Scholar
  45. Herut B, Collier R, Krom MD (2002) The role of dust in supplying nitrogen and phosphorus to the Southeast Mediterranean. Limnol Oceanogr 47(3):870–878Google Scholar
  46. Herwitz SR, Muhs DR, Prospero JM, Mahan S, Vaughn B (1996) Origin of Bermuda’s clay-rich quaternary paleosols and their paleoclimatic significance. J Geophys Res Atmos 101(D18):23389–23400. doi: 10.1029/96JD02333 CrossRefGoogle Scholar
  47. Hicks BB, Wesely ML, Durham JL (1980) Critique of methods to measure dry deposition: workshop summary. U.S. Environmental Sciences Research Laboratory, Research Triangle Park, NCGoogle Scholar
  48. Holmes CW, Miller R (2004) Atmospherically transported elements and deposition in the Southeastern United States: local or transoceanic? Appl Geochem 19(7):1189–1200. doi: 10.1016/j.apgeochem.2004.01.015 CrossRefGoogle Scholar
  49. Janos DP (1980) Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology 61(1):151–162. doi: 10.2307/1937165 CrossRefGoogle Scholar
  50. Johnson AH, Frizano J, Vann DR (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135(4):487–499Google Scholar
  51. Jordan CF (1985) Nutrient cycling in tropical forest ecosystems: principles and their application in management and conservation. Wiley, New York, p 190Google Scholar
  52. Jordan C, Golley F, Hall J, Hall J (1980) Nutrient scavenging of rainfall by the canopy of an Amazonian rain forest. Biotropica 12(1):61–66. doi: 10.2307/2387774 CrossRefGoogle Scholar
  53. Kaspari M et al (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11(1):35–43Google Scholar
  54. Kellman M, Hudson J, Sanmugadas K (1982) Temporal variability in atmospheric nutrient influx to a tropical ecosystem. Biotropica 14(1):1–9. doi: 10.2307/2387753 CrossRefGoogle Scholar
  55. Kohfeld KE, Harrison SP (2001) DIRTMAP: the geological record of dust. Earth Sci Rev 54(1–3):81–114. doi: 10.1016/S0012-8252(01)00042-3 CrossRefGoogle Scholar
  56. Kurtz AC, Derry LA, Chadwick OA (2001) Accretion of Asian dust to Hawaiian soils: isotopic, elemental, and mineral mass balances. Geochim Cosmochim Acta 65(12):1971–1983. doi: 10.1016/S0016-7037(01)00575-0 CrossRefGoogle Scholar
  57. Larsen MC (1997) Tropical geomorphology and geomorphic work: a study of geomorphic processes and sediment and water budgets in montane humid-tropical forested and developed watersheds, Puerto Rico. Ph.D. thesis, University of Colorado, 341 ppGoogle Scholar
  58. Larsen MC, Parks JE (1997) How wide is a road? The association of roads and mass-wasting in a forested montane environment. Earth Surf Process Landf 22(9):835–848. doi: 10.1002/(SICI)1096-9837(199709)22:9≤835::AID-ESP782≥3.0.CO;2-C CrossRefGoogle Scholar
  59. Larsen MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid tropical environment, Puerto-Rico. Geogr Ann Ser A 75(1–2):13–23CrossRefGoogle Scholar
  60. Larsen MC, Torres-Sanchez AJ (1992) Landslides triggered by the rainfall associated with Hurricane Hugo, 1989. Caribb J Sci 28(3–4):113–120Google Scholar
  61. Larsen MC, Torres-Sanchez AJ, Concepcion IM (1999) Slopewash, surface runoff and fine-litter transport in forest and landslide scars in humid-tropical steeplands, Luquillo Experimental Forest, Puerto Rico. Earth Surf Process Landf 24(6):481–502. doi: 10.1002/(SICI)1096-9837(199906)24:6≤481::AID-ESP967≥3.0.CO;2-G CrossRefGoogle Scholar
  62. Lawrence WT (1996) The Food Base. In: Reagan DP, Waide RB (eds) The food web of a tropical forest. University of Chicago Press, Chicago, p 616Google Scholar
  63. Lesack LFW, Melack JM (1996) Mass balance of major solutes in a rainforest catchment in the Central Amazon: Implications for nutrient budgets in tropical rainforests. Biogeochemistry 32(2):115–142. doi: 10.1007/BF00000355 CrossRefGoogle Scholar
  64. Lindberg SE, Lovett GM (1985) Field measurements of particle dry deposition rates to foliage and inert surfaces in a forest canopy. Environ Sci Technol 19(3):238–244. doi: 10.1021/es00133a003 CrossRefGoogle Scholar
  65. Lindberg SE, Lovett GM, Schaefer DA, Bredemeier M (1988) Dry deposition velocities and surface-to-canopy scaling factors for aerosol calcium from forest canopy throughfall. J Aerosol Sci 19(7):1187–1190. doi: 10.1016/0021-8502(88)90132-2 CrossRefGoogle Scholar
  66. Lodge DJ, McDowell WH, McSwiney CP (1994) The importance of nutrient pulses in tropical forests. Trends Ecol Evol 9(10):384–387. doi: 10.1016/0169-5347(94)90060-4 CrossRefGoogle Scholar
  67. Lundgren L (1978) Studies of soil and vegetation development on fresh landslide scars in the Mgeta Valley, western Uluguru Mountains, Tanzania. Geogr Ann Ser A 60(3–4):91–127CrossRefGoogle Scholar
  68. Mahowald NM et al (2005a) Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochemical Cycles 19(4):GB4030CrossRefGoogle Scholar
  69. Mahowald NM et al (2005b) Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19(4):GB4025. doi: 10.1029/2004GB002402 CrossRefGoogle Scholar
  70. Mahowald NM et al (2006) Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res Atmos 111(D10):D10202. doi: 10.1029/2005JD006653 CrossRefGoogle Scholar
  71. Mahowald N et al (2008) Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem Cycles 22(4). doi: 10.1029/2008GB003240
  72. Matson PM, McDowell WH, Townsend AR, Vitousek PM (1999) The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46:67–83Google Scholar
  73. McDowell WH, Asbury CE (1994) Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnol Oceanogr 39:111–125Google Scholar
  74. McGrath DA, Smith CK, Gholz HL, Oliveira FD (2001) Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems (NY, Print) 4(7):625–645. doi: 10.1007/s10021-001-0033-0 CrossRefGoogle Scholar
  75. McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85(9):2390–2401. doi: 10.1890/03-0351 CrossRefGoogle Scholar
  76. McTainsh G (1980) Harmattan dust deposition in Northern Nigeria. Nature 286(5773):587–588. doi: 10.1038/286587a0 CrossRefGoogle Scholar
  77. Miller HG, Miler JD (1980) Collection and retention of atmospheric pollutants by vegetation. In: International Conference on Ecological Impacts of Acid Precipitation, Sandefjord, Norway. SNSF Project Oslo, NorwayGoogle Scholar
  78. Moreno T et al (2006) Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor. Chemosphere 65(2):261–270. doi: 10.1016/j.chemosphere.2006.02.052 CrossRefGoogle Scholar
  79. Muhs DR, Bush CA, Stewart KC, Rowland TR, Crittenden RC (1990) Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands. Quat Res 33(2):157–177. doi: 10.1016/0033-5894(90)90016-E CrossRefGoogle Scholar
  80. Muhs DR, Budahn JR, Prospero JM, Carey SN (2007) Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida. J Geophys Res Atmos 112:F02009. doi: 10.1029/2005JF000445 CrossRefGoogle Scholar
  81. Myster RW, Fernandez DS (1995) Spatial gradients and patch structure on two Puerto Rican landslides. Biotropica 27(2):149–159. doi: 10.2307/2388990 CrossRefGoogle Scholar
  82. Neff JC, Reynolds RL, Belnap J, Lamothe P (2005) Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol Appl 15(1):87–95. doi: 10.1890/04-0268 CrossRefGoogle Scholar
  83. Neff JC et al (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1(3):189–195. doi: 10.1038/ngeo133 CrossRefGoogle Scholar
  84. Newman EI (1995) Phosphorus inputs to terrestrial ecosytems. J Ecol 83(4):713–726. doi: 10.2307/2261638 CrossRefGoogle Scholar
  85. Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycles 18(2). doi: 10.1029/2003GB002145
  86. Olander LP, Vitousek PM (2004) Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems (NY, Print) 7(4):404–419. doi: 10.1007/s10021-004-0264-y Google Scholar
  87. Paoli GD, Curran LM (2007) Soil nutrients limit fine litter production and tree growth in mature lowland forest of Southwestern Borneo. Ecosystems (NY, Print) 10(3):503–518. doi: 10.1007/s10021-007-9042-y CrossRefGoogle Scholar
  88. Paoli GD, Curran LM, Zak DR (2005) Phosphorus efficiency of Bornean rain forest productivity: evidence against the unimodal efficiency hypothesis. Ecology 86(6):1548–1561. doi: 10.1890/04-1126 CrossRefGoogle Scholar
  89. Peretyazhko T, Sposito G (2005) Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim Cosmochim Acta 69(14):3643–3652. doi: 10.1016/j.gca.2005.03.045 CrossRefGoogle Scholar
  90. Perry KD, Cahill TA, Eldred RA, Dutcher DD, Gill TE (1997) Long-range transport of North African dust to the eastern United States. J Geophys Res Atmos 102(D10):11225–11238. doi: 10.1029/97JD00260 CrossRefGoogle Scholar
  91. Pett-Ridge JC, Derry LA, Kurtz AC (2009) Sr isotopes as a tracer of weathering processes and dust inputs in a tropical granitoid watershed, Luquillo Mountains, Puerto Rico. Geochim Cosmochim Acta 73:25–43. doi: 10.1016/j.gca.2008.09.032 CrossRefGoogle Scholar
  92. Porder S, Paytan A, Vitousek PM (2005) Erosion and landscape development affect plant nutrient status in the Hawaiian Islands. Oecologia 142(3):440–449. doi: 10.1007/s00442-004-1743-8 CrossRefGoogle Scholar
  93. Porder S, Vitousek PM, Chadwick OA, Chamberlain CP, Hilley GE (2007) Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems (NY, Print) 10(1):158–170. doi: 10.1007/s10021-006-9011-x Google Scholar
  94. Proctor J (1987) Nutrient cycling in primary and old secondary rain forests. Appl Geogr 7(2):135–152. doi: 10.1016/0143-6228(87)90046-4 CrossRefGoogle Scholar
  95. Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: climate change implications. Science 302(5647):1024–1027. doi: 10.1126/science.1089915 CrossRefGoogle Scholar
  96. Prospero JM, Nees RT (1986) Impact of the North African drought and El-Nino on mineral dust in the Barbados trade winds. Nature 320(6064):735–738. doi: 10.1038/320735a0 CrossRefGoogle Scholar
  97. Prospero JM, Bonatti E, Schubert C, Carlson TN (1970) Dust in Caribbean atmosphere traced to an African dust storm. Earth Planet Sci Lett 9(3):287–293. doi: 10.1016/0012-821X(70)90039-7 CrossRefGoogle Scholar
  98. Prospero JM, Glaccum RA, Nees RT (1981) Atmospheric transport of soil dust from Africa to South America. Nature 289(5798):570–572. doi: 10.1038/289570a0 CrossRefGoogle Scholar
  99. Prospero JM, Nees RT, Uematsu M (1987) Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. J Geophys Res Atmos 92(D12):14723–14731. doi: 10.1029/JD092iD12p14723 CrossRefGoogle Scholar
  100. Read DJ (1991) Mycorrhizas in ecosystems: nature’s response to the “law of the minimum”. In: Hawkins DL (ed) Frontiers in Mycology (honorary and general lectures from the Fourth Internantional Mycological Congress), Regensburg, 1990. CAB International, WallingfordGoogle Scholar
  101. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101(30):11001–11006. doi: 10.1073/pnas.0403588101 CrossRefGoogle Scholar
  102. Reid EA, Reid JS, Meier MM, Dunlap MR, Cliff SS, Broumass A, Perry K, Maring H (2003) Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis. J Geophys Res Atmos 108(D19): 8591Google Scholar
  103. Reynolds R, Neff J, Reheis M, Lamothe P (2006) Atmospheric dust in modem soil on aeolian sandstone, Colorado Plateau (USA): variation with landscape position and contribution to potential plant nutrients. Geoderma 130(1–2):108–123. doi: 10.1016/j.geoderma.2005.01.012 CrossRefGoogle Scholar
  104. Richter DD, Allen HL, Li JW, Markewitz D, Raikes J (2006) Bioavailability of slowly cycling soil phosphorus: major restructuring of soil P fractions over four decades in an aggrading forest. Oecologia 150(2):259–271. doi: 10.1007/s00442-006-0510-4 CrossRefGoogle Scholar
  105. Ridame C, Guieu C (2002) Saharan input of phosphate to the oligotrophic water of the open western Mediterranean Sea. Limnol Oceanogr 47(3):856–869Google Scholar
  106. Riebe CS, Kirchner JW, Finkel RC (2003) Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochim Cosmochim Acta 67(22):4411–4427. doi: 10.1016/S0016-7037(03)00382-X CrossRefGoogle Scholar
  107. Rognon P, Coude-Gaussen G, Revel M, Grousset FE, Pedemay P (1996) Holocene Saharan dust deposition on the Cape Verde Islands: sedimentological and Nd–Sr isotopic evidence. Sedimentology 43:359–366. doi: 10.1046/j.1365-3091.1996.d01-8.x CrossRefGoogle Scholar
  108. Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New YorkGoogle Scholar
  109. Scatena FN (1995) Relative scales of time and effectiveness of watershed processes in a tropical Montane Rain Forest of Puerto Rico. In: Miller AJ, Potter KW, Wilcock PR (eds) Natural and anthropogenic influences in fluvial geomorphology. Geophysical Monographs, AGU, Washington, DC, pp 103–111Google Scholar
  110. Scatena FN, Lugo AE (1995) Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steepland watersheds of Puerto Rico. Geomorphology 13(1–4):199–213. doi: 10.1016/0169-555X(95)00021-V CrossRefGoogle Scholar
  111. Schulz MS, White AF (1999) Chemical weathering in a tropical watershed, Luquillo mountains, Puerto Rico III: quartz dissolution rates. Geochim Cosmochim Acta 63(3–4):337–350. doi: 10.1016/S0016-7037(99)00056-3 CrossRefGoogle Scholar
  112. Seiders VM (1974) Cretaceous and lower tertiary stratigraphy of the Gurabo and El Yunque Quadrangles, Puerto Rico. U. S. Geological Survey, Washington, DC, Bulletin F 1294Google Scholar
  113. Sharpley AN, Tiessen H, Cole CV (1987) Soil phosphorus forms extracted by soil tests as a function of pedogenesis. Soil Sci Soc Am J 51(2):362–365Google Scholar
  114. Silver WL (1994) Is nutrient availability related to plant nutrient use in humid tropical forests? Oecologia 98(3–4):336–343. doi: 10.1007/BF00324222 CrossRefGoogle Scholar
  115. Silver WL, Scatena FN, Johnson AH, Siccama TG, Sanchez MJ (1994) Nutrient availability in a montane wet tropical forest: spatial patterns and methodological considerations. Plant Soil 164(1):129–145. doi: 10.1007/BF00010118 CrossRefGoogle Scholar
  116. Silver WL, Lugo AE, Keller M (1999) Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44(3):301–328Google Scholar
  117. Simon A, Larsen MC, Hupp CR (1990) The role of soil processes in determining mechanisms of slope failure and hillslope development in a humid-tropical forest, eastern Puerto Rico. Geomorphology 3(3/4):263–286. doi: 10.1016/0169-555X(90)90007-D CrossRefGoogle Scholar
  118. Singer A, Dultz S, Argaman E (2004) Properties of the non-soluble fractions of suspended dust over the Dead Sea. Atmos Environ 38(12):1745–1753. doi: 10.1016/j.atmosenv.2003.12.026 CrossRefGoogle Scholar
  119. Smith AL, Schellekens JH, Diaz ALM (1998) Batholiths as markers of tectonic change in northeastern Caribbean. In: Lidiak E.G., Larue DK (eds) Tectonics and geochemistry of the northeastern Caribbean. Geological society of America special paper. Boulder, Colorado, pp 99–122Google Scholar
  120. Soderberg K, Compton JS (2007) Dust as a nutrient source for fynbos ecosystems, South Africa. Ecosystems (NY, Print) 10(4):550–561. doi: 10.1007/s10021-007-9032-0 CrossRefGoogle Scholar
  121. Stoorvogel JJ, Van Breemen N, Janssen BH (1997) The nutrient input by Harmattan dust to a forest ecosystem in Cote d’Ivoire, Africa. Biogeochemistry 37(2):145–157. doi: 10.1023/A:1005734225727 CrossRefGoogle Scholar
  122. Swap R, Garstang M, Greco S, Talbot R, Kallberg P (1992) Saharan dust in the Amazon Basin. Tellus B Chem Phys Meterol 44(2):133–149. doi: 10.1034/j.1600-0889.1992.t01-1-00005.x CrossRefGoogle Scholar
  123. Tanner EVJ, Kapos V, Freskos S, Healey JR, Theobald AM (1990) Nitrogen and phosphorus fertilization of Jamaican montane forest trees. J Trop Ecol 6:231–238CrossRefGoogle Scholar
  124. Tanner EVJ, Kapos V, Franco W (1992) Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73(1):78–86. doi: 10.2307/1938722 CrossRefGoogle Scholar
  125. Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79(1):10–22CrossRefGoogle Scholar
  126. Tiessen H, Stewart JWB, Cole CV (1984) Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Sci Soc Am J 48(4):853–858Google Scholar
  127. Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007) Controls over foliar N:P ratios in tropical rain forests. Ecology 88(1):107–118. doi: 10.1890/0012-9658(2007)88[107:COFNRI]2.0.CO;2 CrossRefGoogle Scholar
  128. Tsukuda S, Sugiyama M, Harita Y, Nishimura K (2006) Atmospheric phosphorus deposition in Ashiu, Central Japan—source apportionment for the estimation of true input to a terrestrial ecosystem. Biogeochemistry 77(1):117–138. doi: 10.1007/s10533-005-1943-2 CrossRefGoogle Scholar
  129. Turner BF, Stallard RF, Brantley SL (2003) Investigation of in situ weathering of quartz diorite bedrock in the Rio Icacos basin, Luquillo Experimental Forest, Puerto Rico. Chem Geol 202(3–4):313–341. doi: 10.1016/j.chemgeo.2003.05.001 CrossRefGoogle Scholar
  130. USDA NRCS (2002) Soil Survey of Caribbean National Forest and Luquillo Experimental Forest, Commonwealth of Puerto Rico. USDA Natural Resources Conservation Service, Washington, DCGoogle Scholar
  131. Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65(1):285–298. doi: 10.2307/1939481 CrossRefGoogle Scholar
  132. Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37(1):63–75. doi: 10.1023/A:1005757218475 CrossRefGoogle Scholar
  133. Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167. doi: 10.1146/ CrossRefGoogle Scholar
  134. Vitousek P et al (2003) Erosion and the rejuvenation of weathering-derived nutrient supply in an old tropical landscape. Ecosystems (NY, Print) 6(8):762–772. doi: 10.1007/s10021-003-0199-8 CrossRefGoogle Scholar
  135. Vogt KA et al (1993) Belowground responses as indicators of environmental change. Environ Exp Bot 33(1):189–205. doi: 10.1016/0098-8472(93)90065-N CrossRefGoogle Scholar
  136. Walker TW, Syers JK (1976) Fate of phosphorus during pedogenesis. Geoderma 15(1):1–19. doi: 10.1016/0016-7061(76)90066-5 CrossRefGoogle Scholar
  137. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305(5683):509–513. doi: 10.1126/science.1098778 CrossRefGoogle Scholar
  138. Weaver PL, Murphy PG (1990) Forest structure and productivity in Puerto Rico’s Luquillo Mountains. Biotropica 22(1):69–82. doi: 10.2307/2388721 CrossRefGoogle Scholar
  139. Went FW, Stark N (1968) Mycorrhiza. Bioscience 18(11):1035–1039. doi: 10.2307/1294552 CrossRefGoogle Scholar
  140. White EJ, Turner F (1970) Method of estimating income of nutrients in a catch of airborne particles by a woodland canopy. J Appl Ecol 7(3):441–461. doi: 10.2307/2401970 CrossRefGoogle Scholar
  141. White AF et al (1998) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes. Geochim Cosmochim Acta 62(2):209–226. doi: 10.1016/S0016-7037(97)00335-9 CrossRefGoogle Scholar
  142. Whitmore TC (1989) Tropical forest nutrients, where do we stand? A tour de horizon. In: Proctor J (ed) Mineral Nutrients in tropical forest and savanna ecosystems. Blackwell Scientific Press, Oxford, pp 1–13Google Scholar
  143. Wilcke W et al (2003) Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. Catena 53(1):79–95. doi: 10.1016/S0341-8162(02)00196-0 CrossRefGoogle Scholar
  144. Wilke BM, Duke BJ, Jimoh WLO (1984) Mineralogy and chemistry of Harmattan dust in Northern Nigeria. Catena 11(1):91–96. doi: 10.1016/S0341-8162(84)80009-0 CrossRefGoogle Scholar
  145. Zarin DJ, Johnson AH (1995) Nutrient accumulation during primary succession in a montane tropical forest, Puerto Rico. Soil Sci Soc Am J 59(5):1444–1452CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of OxfordOxfordUK

Personalised recommendations