, Volume 93, Issue 3, pp 197–218 | Cite as

Unusual seasonal patterns and inferred processes of nitrogen retention in forested headwaters of the Upper Susquehanna River

  • Christine L. Goodale
  • Steven A. Thomas
  • Guinevere Fredriksen
  • Emily M. Elliott
  • Kathryn M. Flinn
  • Thomas J. Butler
  • M. Todd Walter


Atmospheric deposition contributes a large fraction of the annual nitrogen (N) input to the basin of the Susquehanna River, a river that provides two-thirds of the annual N load to the Chesapeake Bay. Yet, there are few measurements of the retention of atmospheric N in the Upper Susquehanna’s forested headwaters. We characterized the amount, form (nitrate, ammonium, and dissolved organic nitrogen), isotopic composition (δ15N- and δ18O-nitrate), and seasonality of stream N over 2 years for 7–13 catchments. We expected high rates of N retention and seasonal nitrate patterns typical of other seasonally snow-covered catchments: dormant season maxima and growing season minima. Coarse estimates of N export indicated high rates of inorganic N retention (>95%), yet streams had unexpected seasonal nitrate patterns, with summer peaks (14–96 μmol L−1), October crashes (<1 μmol L−1), and modest rebounds during the dormant season (<1–20 μmol L−1). Stream δ18O-nitrate values indicated microbial nitrification as the primary source of stream nitrate, although snowmelt or other atmospheric source contributed up to 47% of stream nitrate in some March samples. The autumn nitrate crash coincided with leaffall, likely due to in-stream heterotrophic uptake of N. Hypothesized sources of the summer nitrate peaks include: delayed release of nitrate previously flushed to groundwater, weathering of geologic N, and summer increases in net nitrate production. Measurements of shale δ15N and soil-, well-, and streamwater nitrate within one catchment point toward a summer increase in soil net nitrification as the driver of this pattern. Rather than seasonal plant demand, processes governing the seasonal production, retention, and transport of nitrate in soils may drive nitrate seasonality in this and many other systems.


1518Geologic nitrogen In-stream uptake Nitrogen retention Nitrate seasonality 



Thanks to Randy Dahlgren for advice on rock N methods, to Steve Romaniello and Dan Roock for help with rock preparation, to AJ Golash and Alicia Koral for assistance installing the lysimeters, and to Linda Pardo, Steve Sebestyen and an anonymous reviewer for helpful comments. This work was supported by NYS/WRI award #01HQGR0095 and by the Cornell University AEP/USDA CSREES award #2005-34244-15740. NYSERDA provided funding for a related study of the isotopic composition of precipitation. The EPA Clean Air Markets Division and the NOAA Air Resources Laboratory support the Connecticut Hill monitoring site.


  1. Aber JD, Goodale CL, Ollinger SV, Smith M-L, Magill AH, Martin ME, Hallett RA, Stoddard JL, NERC Participants (2003) Is nitrogen deposition altering the nitrogen status of Northeastern forests? Bioscience 23(4):375–390. doi: 10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2 Google Scholar
  2. Bailey SW, Hornbeck JW (1992) Lithologic composition and rock weathering potential of forested, glacial-till soils. Res. Pap. NE-662. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, RadnorGoogle Scholar
  3. Bailey SW, Likens GE, Buso DC (2003) Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem. Ecology 84:471–484. doi: 10.1890/0012-9658(2003)084[0471:IOSMBF]2.0.CO;2 Google Scholar
  4. Band LE, Tague CL, Groffman P, Belt K (2001) Forest ecosystem processes at the watershed scale: hydrological and ecological controls of nitrogen export. Hydrol Process 15:2013–2028. doi: 10.1002/hyp.253 Google Scholar
  5. Barnes RT, Raymond PA, Casciotti KL (2008) Dual isotope analyses indicate efficient processing of atmospheric nitrate by forested watersheds in the northeastern U.S. Biogeochemistry 90:15–27. doi: 10.1007/s10533-008-9227-2 Google Scholar
  6. Baron JS, Campbell DH (1997) Nitrogen fluxes in a high elevation Colorado Rocky Mountain basin. Hydrol Process 11(7):783–799. doi: 10.1002/(SICI)1099-1085(199706)11:7<783∷AID-HYP519>3.0.CO;2-U Google Scholar
  7. Bernhardt ES, Likens GE (2002) Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology 83(6):1689–1700Google Scholar
  8. Bernhardt ES, Likens GE, Buso DC, Driscoll CT (2003) In-stream uptake dampens effects of major forest disturbance on watershed nitrogen export. Proc Natl Acad Sci USA 100(18):10304–10308. doi: 10.1073/pnas.1233676100 Google Scholar
  9. Bohlen PJ, Groffman PM, Driscoll CT, Fahey TJ, Siccama TG (2001) Plant-soil-microbial interactions in a northern hardwood forest. Ecology 82(4):965–978Google Scholar
  10. Bohlen PJ, Pelletier DM, Groffman PM, Fahey TJ, Fisk MC (2004) Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystems 7:13–27. doi: 10.1007/s10021-003-0127-y (NY print)Google Scholar
  11. Böttcher J, Strebel O, Voerkelius S, Schmidt H-L (1990) Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol (Amst) 114:413–424. doi: 10.1016/0022-1694(90)90068-9 Google Scholar
  12. Boyer EW, Goodale CL, Jaworski NA, Howarth RW (2002) Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57:137–169. doi: 10.1023/A:1015709302073 Google Scholar
  13. Burns DA, Kendall C (2002) Analysis of δ15N and δ18O to differentiate NO3 sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resour Res 38(5):1051. doi: 10.1029/2001WR000292 Google Scholar
  14. Burns DA, Murdoch PS, Lawrence GB, Michel RL (1998) The effect of groundwater springs on NO3 concentrations during late summer in Catskill Mountain streams. Water Resour Res 34:1987–1996. doi: 10.1029/98WR01282 Google Scholar
  15. Burns DA, Boyer EW, Elliott EM, Kendall C (2009) Sources and transformations of nitrate from streams draining various land uses: evidence from dual isotope analysis. J Environ Qual (in press)Google Scholar
  16. Butler TJ, Likens GE (1995) A direct comparison of throughfall plus stemflow to estimates of dry and total deposition for sulfur and nitrogen. Atmos Environ 29(11):1253–1265. doi: 10.1016/1352-2310(94)00339-M Google Scholar
  17. Butler TJ, Likens GE, Vermeylen FM, Stunder BJB (2003) The relation between NOx emissions and precipitation NO3 in the eastern USA. Atmos Environ 37:2093–2104. doi: 10.1016/S1352-2310(03)00103-1 Google Scholar
  18. Cairns MA, Lajtha K (2005) Effects of succession on nitrogen export in the west-central Cascades, Oregon. Ecosystems 8:583–601. doi: 10.1007/s10021-003-0165-5 (NY print)Google Scholar
  19. Campbell JL, Mitchell MJ, Mayer B (2006) Isotopic assessment of NO3 and SO4 2− mobility during winter in two adjacent watersheds in the Adirondack Mountains, New York. JGR-Biogeosci 111:G04007. doi: 10.1029/2006JG000208 Google Scholar
  20. Casciotti KL, Sigman DM, Hastings MG, Bohlke JK, Hilkert A (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912. doi: 10.1021/ac020113w Google Scholar
  21. Chang CCY, Langston J, Riggs M, Campbell DH, Silva SR, Kendall C (1999) A method for nitrate collection for δ15N and δ18O analysis from waters with low nitrate concentrations. Can J Fish Aquat Sci 56:1–9. doi: 10.1139/cjfas-56-10-1856 Google Scholar
  22. Christopher SF, Page BD, Campbell JL, Mitchell MJ (2006) Contrasting stream water NO3 and Ca2+ in two nearly adjacent catchments: the role of soil Ca and forest vegetation. Glob Change Biol 12:364–381. doi: 10.1111/j.1365-2486.2006.01084 Google Scholar
  23. Church MR (1997) Hydrochemistry of forested catchments. Annu Rev Earth Planet Sci 25:23–59. doi: 10.1146/ Google Scholar
  24. Creed IF, Band LE (1998) Export of nitrogen from catchments within a temperate forest: evidence for a unifying mechanism regulated by variable source area dynamics. Water Resour Res 34:3105–3120. doi: 10.1029/98WR01924 Google Scholar
  25. Curtis CJ, Evans CD, Helliwell RC, Monteith DT (2005) Nitrate leaching as a confounding factor in chemical recovery from acidification in UK upland waters. Environ Pollut 137:73–82. doi: 10.1016/j.envpol.2004.12.032 Google Scholar
  26. Davies JJL, Jenkins A, Monteith DT, Evans CD, Cooper DM (2005) Trends in surface water chemistry of acidified UK freshwaters, 1988–2002. Environ Pollut 137:27–39. doi: 10.1016/j.envpol.2004.12.029 Google Scholar
  27. de Wit HA, Hindar A, Hole L (2008) Winter climate affects long-term trends in stream water nitrate in acid-sensitive catchments in southern Norway. Hydrol Earth Syst Sci 12:393–403Google Scholar
  28. Dise NB, Wright RF (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manag 71:153–161Google Scholar
  29. Dittman JA, Driscoll CT, Groffman PM, Fahey TJ (2007) Dynamics of nitrogen and dissolved organic carbon at the Hubbard Brook Experimental Forest. Ecology 88(5):1153–1166. doi: 10.1890/06-0834 Google Scholar
  30. Driscoll CT, Whitall DR, Aber JD, Boyer EW, Castro M, Cronan C, Goodale CL, Groffman P, Hopkinson C, Lambert K, Lawrence G, Ollinger S (2003a) Nitrogen pollution in the Northeastern United States: sources, effects, and management options. BioSci 23(4):357–374. doi: 10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2 Google Scholar
  31. Driscoll CT, Driscoll KM, Roy KM, Mitchell MJ (2003b) Chemical response of lakes in the Adirondack region of New York to declines in acidic deposition. Environ Sci Technol 37:2036–2042. doi: 10.1021/es020924h Google Scholar
  32. Durka W, Schulze ED, Gebauer G, Voerkelius S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 18N and 18O measurements. Nature 372:765–767. doi: 10.1038/372765a0 Google Scholar
  33. Elliott EM, Kendall C, Wankel SD, Burns DA, Boyer EW, Harlin K, Bain DJ, Butler TJ (2007) Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States. Environ Sci Technol 41:7661–7667. doi: 10.1021/es070898t Google Scholar
  34. Fahey TJ (1998) Recent changes in an upland forest in south-central New York. J Torrey Bot Soc 125(1):51–59. doi: 10.2307/2997231 Google Scholar
  35. Fisk MC, Fahey TJ, Groffman PM, Bohlen PJ (2004) Earthworm invasion, fine-root distributions, and soil respiration in north temperate forests. Ecosystems 7:55–62. doi: 10.1007/s10021-003-0130-3 (NY print)Google Scholar
  36. Flinn KM, Marks PL (2007) Agricultural legacies in forest environments: tree communities, soil properties, and light availability. Ecol Appl 17(2):452–463. doi: 10.1890/05-1963 Google Scholar
  37. Flinn KM, Vellend M, Marks PL (2005) Environmental causes and consequences of forest clearance and agricultural abandonment in central New York. J Biogeogr 32:439–452. doi: 10.1111/j.1365-2699.2004.01198.x Google Scholar
  38. Foster NW, Nicolson JA, Hazlett PW (1989) Temporal variation in nitrate and nutrient cations in drainage waters from a deciduous forest. J Environ Qual 18:238–244CrossRefGoogle Scholar
  39. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53(4):341–356. doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2 Google Scholar
  40. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi: 10.1007/s10533-004-0370-0 Google Scholar
  41. Goodale CL, Aber JD (2001) The long-term effects of land-use history on nitrogen cycling in northern hardwood forests. Ecol Appl 11(1):253–267. doi: 10.1890/1051-0761(2001)011[0253:TLTEOL]2.0.CO;2 Google Scholar
  42. Goodale CL, Aber JD, McDowell WH (2000) The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems 3:433–450. doi: 10.1007/s100210000039 (NY print)Google Scholar
  43. Goodale CL, Lajtha K, Nadelhoffer KJ, Boyer EW, Jaworski NA (2002) Forest nitrogen sinks in large eastern U.S. watersheds: estimates from forest inventory and an ecosystem model. Biogeochemistry 57/58:239–266. doi: 10.1023/A:1015796616532 Google Scholar
  44. Gundersen P, Callesen I, De Vries W (1998) Nitrate leaching in forest ecosystems is related to organic top layer C/N ratios. Environ Pollut 102(S1):403–407. doi: 10.1016/S0269-7491(98)80060-2 Google Scholar
  45. Hagy JD, Boynton WR, Keefe CW, Wood KV (2004) Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow. Estuaries 27(4):634–658. doi: 10.1007/BF02907650 Google Scholar
  46. Hales HC, Ross DS, Lini A (2007) Isotopic signature of nitrate in two contrasting watersheds of Brush Brook, Vermont, USA. Biogeochemistry 84:51–66. doi: 10.1007/s10533-007-9074-6 Google Scholar
  47. Holland EA, Dentener FJ, Braswell BH, Sulzman JM (1999) Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46:7–43Google Scholar
  48. Holloway JM, Dahlgren RA (1999) Geologic nitrogen in terrestrial biogeochemical cycling. Geology 27:567–570. doi: 10.1130/0091-7613(1999)027<0567:GNITBC>2.3.CO;2 Google Scholar
  49. Holloway JM, Dahlgren RA (2002) Nitrogen in rock: occurrences and biogeochemical implications. Global Biogeochem Cycles 16(4):1118. doi: 10.1029/2002GB001862 Google Scholar
  50. Holloway JM, Dahlgren RA, Hansen B, Casey WH (1998) Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature 395:785–788. doi: 10.1038/27410 Google Scholar
  51. Holmes RM, Amino A, Kerouel R, Hooker B, Peterson BJ (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci 56:1801–1808. doi: 10.1139/cjfas-56-10-1801 Google Scholar
  52. Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, Herold N, McKerrow A, VanDriel JN, Wickham J (2007) Completion of the 2001 national land cover database for the conterminous United States. Photogramm Eng Remote Sensing 73(4):337–341Google Scholar
  53. Hornbeck JW, Bailey SW, Buso DC, Shanley JB (1997) Streamwater chemistry and nutrient budgets for forested watersheds in New England: variability and management implications. For Ecol Manag 93:73–89. doi: 10.1016/S0378-1127(96)03937-0 Google Scholar
  54. Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51(1):364–376Google Scholar
  55. Howarth RW, Anderson D, Cloern J, Elfring C, Hopkinson C, Lapointe B, Malone T, Marcus N, McGlathery K, Sharpley A, Walker D (2000) Nutrient pollution of coastal rivers, bays, and seas. Issues Ecol 7:1–15Google Scholar
  56. Inamdar SP, O’Leary N, Mitchell MJ, Riley JT (2006) The impact of storm events on solute export from a glaciated forested watershed in western New York, USA. Hydrol Process 20:3423–3439. doi: 10.1002/hyp.6141 Google Scholar
  57. Ito M, Mitchell MJ, Driscoll CT, Roy KM (2005) Nitrogen input-output budgets for lake-containing watersheds in the Adirondack region of New York. Biogeochemistry 72:283–314. doi: 10.1007/s10533-004-0361-1 Google Scholar
  58. Kendall C (1998) Tracing nitrogen sources and cycling. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, New York, pp 519–576Google Scholar
  59. Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener RM, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell, Oxford, pp 375–449Google Scholar
  60. Lewis GP, Likens GE (2000) Low stream nitrate concentrations associated with oak forests on the Allegheny High Plateau of Pennsylvania. Water Resour Res 36(10):3091–3094. doi: 10.1029/2000WR900101 Google Scholar
  61. Likens GE, Bormann FH (1995) Biogeochemistry of a forested ecosystem, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  62. Lovett GM, Weathers KC, Sobczak WV (2000) Nitrogen saturation and retention in forested watersheds of the Catskill Mountains, New York. Ecol Appl 10(1):73–84. doi: 10.1890/1051-0761(2000)010[0073:NSARIF]2.0.CO;2 Google Scholar
  63. Lovett GM, Weathers KC, Arthur MA (2002) Control of nitrogen loss from forested watersheds by soil carbon:nitrogen ratio and tree species composition. Ecosystems 5:712–718. doi: 10.1007/s10021-002-0153-1 (NY print)Google Scholar
  64. Lovett GM, Likens GE, Buso DC, Driscoll CT, Bailey SW (2005) The biogeochemistry of chlorine at Hubbard Brook, New Hampshire, USA. Biogeochemistry 72:191–232. doi: 10.1007/s10533-004-0357-x Google Scholar
  65. MacDonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Glob Change Biol 8:1028–1033. doi: 10.1046/j.1365-2486.2002.00532.x Google Scholar
  66. Martin CW, Driscoll CT, Fahey TJ (2000) Change in streamwater chemistry after 20 years from forested watersheds in New Hampshire. USA Can J Res 30:1206–1213. doi: 10.1139/cjfr-30-8-1206 Google Scholar
  67. McDowell WH, Fisher SG (1976) Autumnal processing of dissolved organic matter in a small woodland stream ecosystem. Ecology 57(3):561–569. doi: 10.2307/1936440 Google Scholar
  68. Mulholland PJ (2004) The importance of in-stream uptake for regulating stream concentrations and outputs of N and P from a forested watershed: evidence from long-term chemistry records for Walker Branch Watershed. Biogeochemistry 70:403–426. doi: 10.1007/s10533-004-0364-y Google Scholar
  69. Mulholland PJ, Hill WR (1997) Seasonal patterns in streamwater nutrient and dissolved organic carbon concentrations: separating catchment flow path and in-stream effects. Water Resour Res 33:1297–1306. doi: 10.1029/97WR00490 Google Scholar
  70. Mulholland PJ, Helton AM, Poole GC, Hall RO Jr, Hamilton SK, Peterson BJ, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Findlay SEG, Gregory SV, Grimm NB, Johnson SL, McDowell WH, Meyer JL, Valett HM, Webster JR, Arango CP, Beaulier JJ, Bernot MJ, Burgin AJ, Crenshaw CL, Johnson LT, Niederlehner BR, O’Brien JM, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–206. doi: 10.1038/nature06686 Google Scholar
  71. Murdoch PS, Stoddard JL (1993) Chemical characteristics and temporal trends in eight streams of the Catskill Mountains, New York. Water Air Soil Pollut 67:367–395. doi: 10.1007/BF00478154 Google Scholar
  72. Nadelhoffer KJ, Aber JD, Melillo JM (1983) Leaf-litter production and soil organic matter dynamics along a nitrogen availability gradient in southern Wisconsin (USA). Can J Res 13(1):12–21. doi: 10.1139/x83-003 Google Scholar
  73. Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148. doi: 10.1038/18205 Google Scholar
  74. Neeley JA (1965) Soil survey: Tompkins County, New York. Series 1961, number 25. United States Department of Agriculture, Soil Conservation Service, Government Printing Office, Washington, DC, USAGoogle Scholar
  75. Newbold JD, Elwood JW, O’Neill RV, Sheldon AL (1983) Phosphorus dynamics in a woodland stream ecosystem—a study of nutrient spiralling. Ecology 64(5):1249–1265. doi: 10.2307/1937833 Google Scholar
  76. Northeast Regional Climate Center (2008) The climate of Ithaca, NY. Cornell University, Ithaca, NY, USA (
  77. Ohrui K, Mitchell MJ (1997) Nitrogen saturation in Japanese forested watersheds. Ecol Appl 7(2):391–401. doi: 10.1890/1051-0761(1997)007[0391:NSIJFW]2.0.CO;2 Google Scholar
  78. Ohrui K, Mitchell MJ (1999) Hydrological flow paths controlling stream chemistry in Japanese forested watersheds. Hydrol Process 13:877–888. doi: 10.1002/(SICI)1099-1085(19990430)13:6<877∷AID-HYP762>3.0.CO;2-E Google Scholar
  79. Ohte N, Mitchell MJ, Shibata H, Tokuchi N, Toda H, Iwatsubo G (2001) Comparative evaluation of nitrogen saturation of forest catchments in Japan and Northeastern United States. Water Air Soil Pollut 130:649–654. doi: 10.1023/A:1013804728336 Google Scholar
  80. Ohte N, Sebestyen SD, Shanley JB, Doctor DH, Kendall C, Wankel SD, Boyer EW (2004) Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique. Geophys Res Lett 31:L21506. doi: 10.1029/2004GL020908 Google Scholar
  81. Pardo LH, Kendall C, Pett-Ridge J, Chang CCY (2004) Evaluating the source of streamwater nitrate using δ15N and δ18O in nitrate in two watersheds in New Hampshire, USA. Hydrol Process 18:2699–2712. doi: 10.1002/hyp.5576 Google Scholar
  82. Piatek KB, Mitchell MJ, Silva SR, Kendall C (2005) Sources of nitrate in snowmelt discharge: evidence from water chemistry and stable isotopes of nitrate. Water Air Soil Pollut 165:13–35. doi: 10.1007/s11270-005-4641-8 Google Scholar
  83. Rickard LV, Fisher DW (1970) Geologic map of New York: Finger Lakes sheet. New York State Museum and Science Service. Map Chart Ser (Geol Soc Am). The University of the State of New York, Albany, New York, p 15Google Scholar
  84. Roberts BJ, Mulholland PJ (2007) In-stream biotic control on nutrient biogeochemistry in a forested stream, West Fork of Walker Branch. JGR Biogeosci 112:G04002. doi: 10.1029/2007/JG000422 Google Scholar
  85. Rogers WB, Isachsen YW, Mock TD, Nyahay RE (1990) New York State geological highway map: New York State Museum, Educational Leaflet 33, scale 1:1,000,000Google Scholar
  86. Rogora M (2007) Synchronous trends in N-NO3 export from N-saturated river catchments in relation to climate. Biogeochemistry 86:251–268. doi: 10.1007/s10533-007-9157-4 Google Scholar
  87. Sageman BB, Murphy AE, Werne JP, Ver Straeten CA, Hollander DJ, Lyons TW (2003) A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chem Geol 195:229–273. doi: 10.1016/S0009-2541(02)00397-2 Google Scholar
  88. Schiff SL, Devito KJ, Elgood RJ, McCrindle PM, Spoelstra J, Dillon P (2002) Two adjacent forested catchments: dramatically different NO3 export. Water Resour Res 38:1292. doi: 10.1029/2000WR000170 Google Scholar
  89. Sebestyen SD, Boyer EW, Shanley JB, Kendall C, Doctor DH, Aiken GR, Ohte N (2008) Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt at an upland forest. Water Resour Res 44:W12410. doi: 10.1029/2008WR006983 Google Scholar
  90. Sebestyen SD, Shanley JB, Boyer EW (2009) The role for high frequency sampling in documenting the effects of atmospheric pollutants on stream chemistry. Third interagency conference on research in the watersheds, 9–11 September 2008, Estes Park, CO. US Geological Survey, Estes Park, CO (in press)Google Scholar
  91. Sickman JO, Melack JM (1998) Nitrogen and sulfate export from high elevation catchments of the Sierra Nevada, California. Water Air Soil Pollut 105(1–2):217–226. doi: 10.1023/A:1005046819128 Google Scholar
  92. Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Bohlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153. doi: 10.1021/ac010088e Google Scholar
  93. Silva SR, Kendall C, Wilkinson DH, Ziegler AC, Chang CCY, Avanzino RJ (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J Hydrol (Amst) 228:22–36. doi: 10.1016/S0022-1694(99)00205-X Google Scholar
  94. Smith BE, Marks PL, Gardescu S (1993) Two hundred years of forest cover changes in Tompkins County, New York. J Torrey Bot Soc 120:229–247Google Scholar
  95. Sobczak WV, Findlay S, Dye S (2003) Relationships between DOC bioavailability and nitrate removal in an upland stream: an experimental approach. Biogeochemistry 62(3):1608–1617. doi: 10.1023/A:1021192631423 Google Scholar
  96. Spoelstra J, Schiff SL, Elgood RJ, Semkin RG, Jeffries DS (2001) Tracing the sources of exported nitrate in the Turkey Lakes watershed using 15N/14N and 18O/16O isotopic ratios. Ecosystems 4:536–544. doi: 10.1007/s10021-001-0027-y (NY print)Google Scholar
  97. Stark JM (1996) Modeling the temperature response of nitrification. Biogeochemistry 35(3):433–445. doi: 10.1007/BF02183035 Google Scholar
  98. Stoddard JL (1994) Long-term changes in watershed retention of nitrogen. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs, advances in chemistry series, vol 237. American Chemical Society, Washington, pp 223–284Google Scholar
  99. Stoddard JL, Traaen TS, Skjelkvale BL (2001) Assessment of nitrogen leaching at ICP-Waters sites (Europe and North America). Water Air Soil Pollut 130:781–786. doi: 10.1023/A:1013854106471 Google Scholar
  100. Suárez ER, Fahey TJ, Yavitt JB, Groffman PM, Bohlen PJ (2006) Patterns of litter disappearance in a northern hardwood forest invaded by exotic earthworms. Ecol Appl 16(1):154–165. doi: 10.1890/04-0788 Google Scholar
  101. Swank WT, Vose JM (1997) Long-term nitrogen dynamics of Coweeta forested watersheds in the southeastern United States of America. Global Biogeochem Cycles 11:657–671. doi: 10.1029/97GB01752 Google Scholar
  102. Swistock BR, Edwards PJ, Wood F, Dewalle DR (1997) Comparison of methods for calculating annual solute exports from six forested Appalachian watersheds. Hydrol Process 11:655–669. doi: 10.1002/(SICI)1099-1085(199706)11:7<655∷AID-HYP525>3.0.CO;2-4 Google Scholar
  103. Tague CL, Band LE (2004) RHESSys: regional hydro-ecologic simulation system—an object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact 8(19):1–19. doi: 10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2 Google Scholar
  104. Thomas SA, Newbold JD, Monaghan MT, Minshall GW, Georgian T, Cushing CE (2001) The influence of particle size on seston deposition in streams. Limnol Oceanogr 46(6):1415–1424Google Scholar
  105. Valett HM, Thomas SA, Mulholland PJ, Webster JR, Dahm CN, Fellows CS, Crenshaw CL, Peterson CG (2008) Endogenous and exogenous control of ecosystem function: N cycling in headwater streams. Ecology 89(12):3515–3527. doi: 10.1890/07-1003.1 Google Scholar
  106. Vesely J, Majer V, Norton SA (2002) Heterogeneous response of central European streams to decreased acidic atmospheric deposition. Environ Pollut 120(2):275–281. doi: 10.1016/S0269-7491(02)00150-1 Google Scholar
  107. Vitousek PM, Reiners WA (1975) Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25(6):376–381. doi: 10.2307/1297148 Google Scholar
  108. Watmough SA, Eimers MC, Aherne J, Dillon PJ (2004) Climate effects on nitrate from forested catchments in south-central Ontario. Environ Sci Technol 38:2383–2388. doi: 10.1021/es035126l Google Scholar
  109. Williams MW, Baron JS, Caine N, Sommerfeld R, Sanford R Jr (1996) Nitrogen saturation in the Rocky Mountains. Environ Sci Technol 30:640–646. doi: 10.1021/es950383e Google Scholar
  110. Williard KWJ, DeWalle DR, Edwards PJ, Schnabel RR (1997) Indicators of nitrate export from forested watersheds of the mid-Appalachians, United States of America. Global Biogeochem Cycles 11(4):649–656. doi: 10.1029/97GB01627 Google Scholar
  111. Williard KWJ, DeWalle DR, Edwards PJ, Sharpe WE (2001) 18O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds. J Hydrol (Amst) 252:174–188. doi: 10.1016/S0022-1694(01)00459-0 Google Scholar
  112. Williard KWJ, DeWalle DR, Edwards PJ (2005) Influence of bedrock geology and tree species composition on stream nitrate concentrations in mid-Appalachian forested watersheds. Water Air Soil Pollut 160:55–76. doi: 10.1007/s11270-005-3649-4 Google Scholar
  113. Wright RF, Alewell C, Cullen JM, Evans CD, Marchetto A, Moldan F, Prechtel A, Rogora M (2001) Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrol Earth Syst Sci 5(3):299–310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Christine L. Goodale
    • 1
  • Steven A. Thomas
    • 2
  • Guinevere Fredriksen
    • 1
  • Emily M. Elliott
    • 3
  • Kathryn M. Flinn
    • 4
  • Thomas J. Butler
    • 1
    • 5
  • M. Todd Walter
    • 6
  1. 1.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  2. 2.School of Natural ResourcesUniversity of Nebraska-LincolnLincolnUSA
  3. 3.Department of Geology and Planetary ScienceUniversity of PittsburghPittsburghUSA
  4. 4.Department of BiologyMcGill UniversityMontrealCanada
  5. 5.Cary Institute of Ecosystem StudiesMillbrookUSA
  6. 6.Department of Biological and Environmental EngineeringCornell UniversityIthacaUSA

Personalised recommendations