, Volume 91, Issue 2–3, pp 201–222 | Cite as

Nitrogen biogeochemistry of a mature Scots pine forest subjected to high nitrogen loads

  • J. Neirynck
  • I. A. Janssens
  • P. Roskams
  • P. Quataert
  • P. Verschelde
  • R. Ceulemans


Nitrogen (N) biogeochemistry of a mature Scots pine (Pinus sylvestris L.) stand subjected to an average total atmospheric N deposition of 48 kg ha−1 year−1 was studied during the period 1992–2007. The annual amount of dissolved inorganic nitrogen (DIN) in throughfall (TF) averaged 34 kg ha−1 year−1 over the 16-year monitoring period. The throughfall fluxes contained also considerable amounts of dissolved organic nitrogen (DON) (5–8.5 kg N ha−1 year−1), which should be incorporated in the estimate of N flux using throughfall collectors. Throughfall DIN fluxes declined at a rate of −0.9 kg N ha−1 year−1, mainly due to the decreasing TF fluxes of ammonium (NH4), which accounted for 70% to TF DIN. The decrease in TF DIN was accompanied by a decrease in DIN leaching in the seepage water (−1.6 kg N ha−1 year−1), which occurred exclusively as nitrate (NO3 ). Nitrate losses in the leachate of the forest floor (LFH) equalled the TF NO3 delivered to the LFH-layer. On the contrary, about half of the TF NH4 + was retained within the LFH-layer. Approximately 60% of the TF DIN fluxes were leached indicating that N inputs were far in excess of the N requirements of the forest. For DON, losses were only substantial from the LFH-layer, but no DON was leached in the seepage water. Despite the high N losses through nitrate leaching and NO x emission, the forest was still accumulating N, especially in the aggrading LFH-layer. The forest stand, on the contrary, was found to be a poor N sink.


Ammonium Dry deposition Dissolved organic nitrogen Forest floor Nitrogen retention Nitrogen cycling Nitrate leaching Throughfall 



Financial support for the purchase of the AMANDA monitor, dry denuder/filter pack measurements and for the employment of technical staff was provided by the VLINA (Flemish Impuls Program on Nature Development). This project was performed under the authority of the Flemish Minister of Environment. Sampling of throughfall, soil water and litterfall was carried out within the framework of the UN/ECE intensive monitoring of forest ecosystems (ICP-Forests). We’d like to thank S. Coenen and A. Verstraeten for the supply of level II-data. We acknowledge chief laboratory engineer G. Genouw for additional N analyses. Data from biomass analysis were collected by Linda Meiresonne and N incubation experiments were run by M. Carnol within the framework of the BELFOR program (contract CG/DD/05) financed by the Belgian Federal Office for Scientific, Technical and Cultural Affairs. IAJ and RC acknowledge support by UA-Methusalem.


  1. Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:379–386. doi: 10.2307/1311067 CrossRefGoogle Scholar
  2. Aber JD, Magill A, McNulty SG, Boone RD, Nadelhoffer KJ, Downs M, Hallett R (1995) Forest biogeochemistry and primary production altered by nitrogen saturation. Water Air Soil Pollut 85:1665–1670. doi: 10.1007/BF00477219 CrossRefGoogle Scholar
  3. Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48:921–934. doi: 10.2307/1313296 CrossRefGoogle Scholar
  4. Beier C, Rasmussen L, Pilegaard K, Ambus P, Mikkelsen T, Jensen NO, Kjoller A, Priemé A, Ladekarl UL (2001) Fluxes of NO3 , NH4 +, NO, NO2, and N2O in an old Danish beech forest. Water Air Soil Pollut Focus 1:187–195. doi: 10.1023/A:1011538729122 CrossRefGoogle Scholar
  5. Berg B (2004) Sequestration rates for C and N in soil organic matter. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment. Ecological studies, vol 172. Springer-Verlag, Berlin Heidelberg, pp 361–376Google Scholar
  6. Berg B, Mcclaugherty C, Desanto AV, Johansson MB, Ekbohm G (1995) Decomposition of litter and soil organic-matter—can we distinguish a mechanism for soil organic-matter buildup. Scand J For Res 10(2):108–119CrossRefGoogle Scholar
  7. Borken W, Matzner E (2004) Nitrate leaching in forest soils: an analysis of long-term monitoring sites in Germany. J Plant Nutr Soil Sci 167:277–283. doi: 10.1002/jpln.200421354 CrossRefGoogle Scholar
  8. Carlisle A, Brown AH, White EJ (1966) The organic matter and nutrient elements in the precipitation beneath a sessile oak (Quercus petraea) canopy. J Ecol 54:87–98. doi: 10.2307/2257660 CrossRefGoogle Scholar
  9. Curiel Yuste J, Konôpka B, Janssens IA, Coenen K, Xiao CW, Ceulemans R (2005) Contrasting net primary productivity and carbon distribution between neighbouring stands of Quercus robur and Pinus sylvestris. Tree Physiol 25:701–712Google Scholar
  10. de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhahn D, Reinds GJ, Nabuurs GJ, Gundersen P, Sutton MA (2008) Ecologically implausible carbon response. Nature 451:E1–E2. doi: 10.1038/nature06579 CrossRefGoogle Scholar
  11. Dise NB, Wright RF (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manage 71:153–161CrossRefGoogle Scholar
  12. Dise NB, Matzner E, Forsius M (1998) Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe. For Ecol Manage 102:453–456Google Scholar
  13. Draaijers GPJ, Erisman JW (1995) A canopy budget model to assess atmospheric deposition from throughfall measurements. Water Air Soil Pollut 85:2253–2258. doi: 10.1007/BF01186169 CrossRefGoogle Scholar
  14. Duyzer JH, Dorsey JR, Gallagher MW, Pilegaard K, Walton S (2004) Oxidized nitrogen and ozone interaction with forests. II: multi-layer process-oriented modelling results and a sensitive study for Douglas fir. Q J R Meteorol Soc 130:1957–1971. doi: 10.1256/qj.03.125 CrossRefGoogle Scholar
  15. Dyer AJ, Hicks BB (1970) Flux-gradient relationships in the constant flux layer. Q J R Meteorol Soc 96:715–721. doi: 10.1002/qj.49709641012 CrossRefGoogle Scholar
  16. Emmet BA, Boxman D, Bredemeier M, Gundersen P, Kjonaas OJ, Moldan F, Schleppi P, Tietema A, Wright RF (1998) Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem-scale experiments. Ecosystems (N Y, Print) 1:352–360. doi: 10.1007/s100219900029 CrossRefGoogle Scholar
  17. Evans CD, Reynolds B, Jenkins A, Helliwell RC, Curtis CJ, Goodale CL, Ferrier RC, Emmett BA, Pilkington MG, Caporn SJM, Carroll JA, Norris D, Davies J, Coull MC (2006) Evidence that soil carbon pool determines susceptibility of semi-natural ecosystems to elevated nitrogen leaching. Ecosystems (N Y, Print) 9:453–462. doi: 10.1007/s10021-006-0051-z CrossRefGoogle Scholar
  18. Feng Z, Brumme R, Xu XJ, Lamersdorf N (2008) Tracing the fate of mineral N compounds under high ambient N deposition in a Norway spruce forest at Solling/Germany. For Ecol Manage 255:2061–2073CrossRefGoogle Scholar
  19. Fenn ME, Poth MA, Johnson DW (1996) Evidence for nitrogen saturation in the San Bernardino Mountains in southern California. For Ecol Manage 82:211–230CrossRefGoogle Scholar
  20. Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998) Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol Appl 8:706–733. doi: 10.1890/1051-0761(1998)008[0706:NEINAE]2.0.CO;2 CrossRefGoogle Scholar
  21. Fenn ME, Poth MA, Terry JD, Blubaugh TJ (2005) Nitrogen mineralization and nitrification in a mixed-conifer forest in southern California: controlling factors, fluxes, and nitrogen fertilization response at a high and low nitrogen deposition site. Can J For Res 35:1464–1486. doi: 10.1139/x05-068 CrossRefGoogle Scholar
  22. Gaige E, Dail D, Hollinger D, Davidson E, Fernandez I, Sievering H, White A, Halteman W (2007) Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest. Ecosystems (N Y, Print) 10:1133–1147. doi: 10.1007/s10021-007-9081-4 CrossRefGoogle Scholar
  23. Goodale CL, Aber JD, Vitousek PM, McDowell WH (2005) Long-term decreases in stream nitrate: successional causes unlikely; possible links to DOC? Ecosystems (N Y, Print) 8:334–337. doi: 10.1007/s10021-003-0162-8 CrossRefGoogle Scholar
  24. Gundersen P (1998) Effects of enhanced nitrogen deposition in a spruce forest at Klosterhede, Denmark, examined by moderate NH4NO3 addition. For Ecol Manage 101:251–268CrossRefGoogle Scholar
  25. Gundersen P, Callessen I, de Vries W (1998) Nitrate leaching in forest ecosystems is controlled by forest floor C:N-ratio. Environ Pollut 102:403–407. doi: 10.1016/S0269-7491(98)80060-2 CrossRefGoogle Scholar
  26. Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environ Rev 14(1):1–57. doi: 10.1139/a05-015 CrossRefGoogle Scholar
  27. IUSS Working Group WRB (2006) World reference base for soil resources, 2nd edn. World soil resources reports no. 103. FAO, RomeGoogle Scholar
  28. Janssens IA, Sampson DA, Cermak J, Meiresonne L, Riguzzi F, Overloop S, Ceulemans R (1999) Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand. Ann For Sci 56:81–90. doi: 10.1051/forest:19990201 CrossRefGoogle Scholar
  29. Janssens IA, Sampson DA, Curiel Yuste J, Carrara A, Ceulemans R (2002) The carbon cost of fine root turnover in a Scots pine forest. For Ecol Manage 168:231–240CrossRefGoogle Scholar
  30. Johnson DW, Cheng W, Burke IC (2000) Biotic and abiotic nitrogen retention in a variety of forest soils. Soil Sci Soc Am J 64:1503–1514Google Scholar
  31. KjØnaas JO, Stuanes AO, Huse M (1998) Effects of weekly nitrogen additions on N cycling in a coniferous forest catchment, Gårdsjön, Sweden. For Ecol Manage 101:227–249CrossRefGoogle Scholar
  32. Kroeze C, Aerts R, van Breemen N, van Dam D, van der Hoek K, Hofschreuder P, Hoosbeek M, de Klein J, Kros H, van Oene H, Oenema O, Tietema A, van der Veeren R, De Vries W (2003) Uncertainties in the fate of nitrogen I: an overview of sources of uncertainty illustrated with a Dutch case study. Nutr Cycl Agroecosyst 66:43–69. doi: 10.1023/A:1023339106213 CrossRefGoogle Scholar
  33. Magill AH, Aber JD (1998) Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 203:301–311. doi: 10.1023/A:1004367000041 CrossRefGoogle Scholar
  34. Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA (1997) Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol Appl 7(2):402–415. doi: 10.1890/1051-0761(1997)007[0402:BROFET]2.0.CO;2 CrossRefGoogle Scholar
  35. Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850. doi: 10.1038/nature05847 CrossRefGoogle Scholar
  36. McNulty SG, Aber TM, Mclellan TM, Katt SM (1990) Nitrogen cycling in high elevation forests of the north-eastern US in relation to nitrogen deposition. Ambio 19:38–40Google Scholar
  37. Meiwes KJ, Mindrup M, Khanna PK (2002) Retention of Ca and Mg in the forest floor of a spruce stand after application of various liming materials. For Ecol Manage 159:27–36CrossRefGoogle Scholar
  38. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. doi: 10.2307/1936780 CrossRefGoogle Scholar
  39. Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen—a synthesis for temperate forests. Biogeochemistry 52(2):173–205. doi: 10.1023/A:1006441620810 CrossRefGoogle Scholar
  40. Micks P, Downs MR, Magill AH, Nadelhoffer KJ, Aber JD (2004) Decomposing litter as a sink for N-15-enriched additions to an oak forest and a red pine plantation. For Ecol Manage 196:71–87CrossRefGoogle Scholar
  41. Nadelhoffer K, Downs M, Fry B, Magill A, Aber J (1999) Controls on N retention and exports in a forested watershed. Environ Monit Assess 55:187–210. doi: 10.1023/A:1006190222768 CrossRefGoogle Scholar
  42. Nadelhoffer KJ, Colman BP, Currie WS, Magill A (2004) Decadal-scale fates of N-15 tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard forest (USA). For Ecol Manage 196:89–107CrossRefGoogle Scholar
  43. Neirynck J, Ceulemans R (2008) Bidirectional ammonia exchange above a mixed coniferous forest. Environ Pollut 154:424–438. doi: 10.1016/j.envpol.2007.11.030 CrossRefGoogle Scholar
  44. Neirynck J, Van Ranst E, Roskams P, Lust N (2002) Impact of declining throughfall depositions on soil solution chemistry at coniferous forests in northern Belgium. For Ecol Manage 160:127–142CrossRefGoogle Scholar
  45. Neirynck J, Genouw G, Coenen S, Roskams P (2004) Deposition and air quality in Flemish forests. Communications IBW. Geraardsbergen, 71 pp (in Dutch)Google Scholar
  46. Neirynck J, Kowalski AS, Carrara A, Genouw G, Berghmans P, Ceulemans R (2007) Fluxes of oxidised and reduced nitrogen above a mixed coniferous forest exposed to various nitrogen emission sources. Environ Pollut 149:31–43. doi: 10.1016/j.envpol.2006.12.029 CrossRefGoogle Scholar
  47. Norby RJ (1998) Nitrogen deposition: a component of global change analyses. New Phytol 139:189–200. doi: 10.1046/j.1469-8137.1998.00183.x CrossRefGoogle Scholar
  48. Nugroho RA, Roling WFM, Laverman AM, Verhoef HA (2007) Low nitrification rates in acid Scots pine forest soils are due to pH-related factors. Microb Ecol 53:89–97. doi: 10.1007/s00248-006-9142-9 CrossRefGoogle Scholar
  49. Pilegaard K, Skiba U, Ambus P, Beier C, Brüggemann N, Butterbach-Bahl K, Dick J, Dorsey J, Duyzer J, Gallagher M, Gasche R, Horvath L, Kitzler B, Leip A, Pihlatie MK, Rosenkranz P, Seufert G, Vesala T, Westrate H, Zechmeister-Boltenstern S (2006) Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O). Biogeosciences 3:651–661CrossRefGoogle Scholar
  50. Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008) Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Glob Chang Biol 14:142–153Google Scholar
  51. Prietzel J, Stetter U, Klemmt HJ, Rehfuess KE (2006) Recent carbon and nitrogen accumulation and acidification in soils of two Scots pine ecosystems in southern Germany. Plant Soil 289:153–170. doi: 10.1007/s11104-006-9120-5 CrossRefGoogle Scholar
  52. Rowe EC, Evans CD, Emmett BA, Reynolds B, Helliwell RC, Coull MC, Curtis CJ (2006) Vegetation type affects the relationship between soil carbon to nitrogen ratio and nitrogen leaching. Water Air Soil Pollut 177:335–347. doi: 10.1007/s11270-006-9177-z CrossRefGoogle Scholar
  53. Rueth HM, Baron JS (2002) Differences in Engelmann spruce forest biogeochemistry east and west of the Continental Divide in Colorado USA. Ecosystems (N Y, Print) 5:45–57. doi: 10.1007/s10021-001-0054-8 CrossRefGoogle Scholar
  54. Stadler B, Solinger S, Michalzik B (2001) Insect herbivores and the nutrient flow from the canopy to the soil in coniferous and deciduous forests. Oecologia 126:104–113. doi: 10.1007/s004420000514 CrossRefGoogle Scholar
  55. Stoddard JL (1994) Long-term changes in watershed retention of nitrogen—its causes and aquatic consequences. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs, No. 237. American Chemical Society, Washington, DC, pp 223–248Google Scholar
  56. Sulkava M, Luyssaert S, Rautio P, Janssens IA, Hollmen J (2007) Modeling the effects of varying data quality on trend detection in environmental modelling. Ecol Inf 2:167–176CrossRefGoogle Scholar
  57. Tietema A, Riemer L, Verstraten JM, van der Maas MP, van Wijk QJ, van Voorthuyzen I (1992) Nitrogen cycling in acid forest soils subject to increased atmospheric nitrogen input. For Ecol Manage 57:29–44CrossRefGoogle Scholar
  58. Tietema A, Emmett BA, Gundersen P, KjØnaas OJ, Koopmans CJ (1998) The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. For Ecol Manage 101:19–27CrossRefGoogle Scholar
  59. Ulrich B (1983) Interactions of forest canopies with atmospheric constituents: SO2, alkali and earth alkali cations and chloride. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht, pp 33–45Google Scholar
  60. Vande Walle I, Lemeur R (eds) (2001) Biogeochemical cycles of belgian forest ecosystems related to global change and sustainable development: final report. Federal Office for Scientific, Technical and Cultural Affairs. Brussels, Belgium, 277 ppGoogle Scholar
  61. Van Den Berge K, Maddelein D, De Vos B, Roskams P (1992) Analysis of air pollution and its consequences on forest ecosystems. Report no. 19 AMINAL, Ministry of the Flemish Community, 169 pp (in Dutch)Google Scholar
  62. Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD (2004) Gross nitrogen process rates in temperate forest soils exhibiting symptoms of nitrogen saturation. For Ecol Manage 196:129–142CrossRefGoogle Scholar
  63. Waldrop P, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations dissolved organic carbon. Ecosystems (N Y, Print) 9:291–933. doi: 10.1007/s10021-004-0149-0 CrossRefGoogle Scholar
  64. White CS (1994) Monoterpenes: their effects on ecosystem nutrient cycling. J Chem Ecol 20:1381–1406. doi: 10.1007/BF02059813 CrossRefGoogle Scholar
  65. Xiao CW, Yuste JC, Janssens IA, Roskams P, Nachtergale L, Carrara A, Sanchez BY, Ceulemans R (2003) Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiol 23:505–516Google Scholar
  66. Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Statistics for biology and health. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. Neirynck
    • 1
  • I. A. Janssens
    • 2
  • P. Roskams
    • 1
  • P. Quataert
    • 1
  • P. Verschelde
    • 1
  • R. Ceulemans
    • 2
  1. 1.Research Institute for Nature and ForestGeraardsbergenBelgium
  2. 2.Department of BiologyUniversity of AntwerpWilrijk, AntwerpBelgium

Personalised recommendations