, Volume 91, Issue 2–3, pp 163–175 | Cite as

Plant silicon isotopic signature might reflect soil weathering degree

  • S. Opfergelt
  • B. Delvaux
  • L. André
  • D. Cardinal


Plants fractionate Si isotopes which provides a useful Si tracer in the Si soil-plant cycle. This study reports plant Si content and Si-isotopic signatures in mature banana plants grown on soils with different weathering degree, but all developed from basaltic pyroclasts in the Mungo area, Cameroon. The δ30Si compositions were determined in various plant parts and soil surface horizons by MC-ICP-MS in dry plasma mode with external Mg doping to a precision of ± 0.15‰ (± 2σSD). The Si-isotopic compositions in banana plants grown on weathered clayey soils (+0.54 ± 0.15‰) are heavier than on weakly developed soils rich in fresh ash and pumice (+0.02 ± 0.15‰). The corresponding bulk soils display lower δ30Si value in weathered soil (−1.41‰) than in poorly developed soil (−0.41‰). We suggest that the dissolved Si source for the plant, governed firstly by dissolution of easily weatherable minerals, was isotopically enriched in heavy isotopes through clay formation over long periods. At seasonal to annual time scale, this source is influenced by a combination of following processes: Si adsorption of light isotopes onto Fe oxides, plant Si uptake and recycling in surface horizons. This would provide an isotopically heavier Si source in the more weathered soil since the Fe oxides content increases with weathering. Plant Si-isotopic signature might thus reflect the soil weathering degree. This study further suggests that in addition to weathering processes, rivers isotopic signatures likely depend on the fate of phytoliths in the soil-plant-river system.


Isotopic fractionation Musa Si cycle Cameroon Soil Weathering sequence 



We woulk like to thank K. Tomekpe and the staff of the “Centre Africain de Recherche sur Bananiers et Plantains” (CARBAP) from Cameroon for their essential support during fieldwork. We greatly thank N. Mattielli and J. de Jong (ULB) for managing the MC-ICP-MS facility in ULB, and A. Iserentant, C. Givron, A. Lannoye, P. Populaire (UCL), L. Monin, N. Dahkani (MRAC) for laboratory assistance. This manuscript has greatly benefited from the constructive comments of A. Sonck and of three anonymous reviewers. S.O. acknowledges the “Communauté française de Belgique” for the travel bursary RS/CHK/RM/CaM/BV05-07. S.O. is supported by the “Fonds National de la Recherche Scientifique” (FNRS) of Belgium as a Research Fellow and D.C. by the Federal Belgian Science Policy. The Si isotopes methodology has been set up owing to various supports from BELSPO (EV/37/7C), FNRS (FRFC 2.4.512.00F), the EC (EVK-CT-2000-00057). This research was supported by the FNRS research convention No. 2.4629.05 and by the “Fonds Spécial de Recherche” (FSR) 2005 of the UCL. The authors thank all these funding agencies for their financial support.


  1. Abraham K, Opfergelt S, Fripiat F, Cavagna A-J, de Jong JTM, Foley S, André L, Cardinal D (2008) δ30Si and δ29Si determinations on BHVO-1 and BHVO-2 reference materials via new configuration on Nu Plasma Multi Collector (MC)-ICP-MS. Geostand Geoanal Res 32:193–202. doi: 10.1111/j.1751-908X.2008.00879.x CrossRefGoogle Scholar
  2. Alexandre A, Meunier J-D, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682. doi: 10.1016/S0016-7037(97)00001-X CrossRefGoogle Scholar
  3. Alleman LY, Cardinal D, Cocquyt C, Plisnier P-D, Descy J-P, Kimirei I, Sinyinza D, André L (2005) Silicon isotopic fractionation in Lake Tanganyika and its main tributaries. J Great Lakes Res 31:509–519CrossRefGoogle Scholar
  4. Bartoli F, Burtin G, Herbillon AJ (1991) Disaggregation and clay dispersion of oxisols: Na-resin, a recommended methodology. Geoderma 493:301–317. doi: 10.1016/0016-7061(91)90082-5 CrossRefGoogle Scholar
  5. Berner RA (1997) The rise of plants and their effect on weathering and atmospheric CO2. Science 276:544–546. doi: 10.1126/science.276.5312.544 CrossRefGoogle Scholar
  6. Bikerland PW (1974) Pedology, weathering and geomorphological research. Oxford University Press, NY 285pGoogle Scholar
  7. Cardinal D, Alleman LY, De Jong J, Ziegler K, André L (2003) Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J Anal At Spectrom 18:213–218. doi: 10.1039/b210109b CrossRefGoogle Scholar
  8. Champion J (1963) Le bananier. G.P.-Maisonneuve & Larose, Paris, p 263pGoogle Scholar
  9. Chao TT, Sanzolone RF (1992) Decomposition techniques. J Geochem Explor 44:65–106. doi: 10.1016/0375-6742(92)90048-D CrossRefGoogle Scholar
  10. Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cycles 16(4):1121. doi: 10.1029/2002GB001894 CrossRefGoogle Scholar
  11. De La Rocha CL (2003) Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology 31:423–426. doi :10.1130/0091-7613(2003)031<0423:SIFBMS>2.0.CO;2CrossRefGoogle Scholar
  12. De La Rocha CL, Brzezinski MA, DeNiro MJ (1996) Purification, recovery, and laser-driven fluorination of silicon dissolved and particulate silica for the measurement of natural stable isotope abundances. Anal Chem 68:3746–3750. doi: 10.1021/ac960326j CrossRefGoogle Scholar
  13. De La Rocha CL, Brzezinski MA, DeNiro MJ (1997) Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim Cosmochim Acta 61:5051–5056. doi: 10.1016/S0016-7037(97)00300-1 CrossRefGoogle Scholar
  14. De La Rocha CL, Brzezinski MA, DeNiro MJ (2000) A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim Cosmochim Acta 64:2467–2477. doi: 10.1016/S0016-7037(00)00373-2 CrossRefGoogle Scholar
  15. Delstanche S, Opfergelt S, Cardinal D, Elsass F, André L, Delvaux B. Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide. Geochim Cosmochim Acta (in press). doi: 10.1016/j.gca.2008.11.014
  16. Delvaux B (1988) Constituants et propriétés de surface des sols dérivés de pyroclastes basaltiques du Cameroun occidental. Approche génétique de leur fertilité. PhD Thesis, UCL, Unité de Chimie des Interfaces, 335 pGoogle Scholar
  17. Delvaux B, Herbillon AJ, Vielvoye L (1989) Characterization of a weathering sequence of soils derived from volcanic ash in Cameroon—taxonomic, mineralogical and agronomic implications. Geoderma 45:375–388. doi: 10.1016/0016-7061(89)90017-7 CrossRefGoogle Scholar
  18. Delvaux B, Herbillon AJ, Dufey JE, Vielvoye L (1990a) Surface properties and clay mineralogy of hydrated halloysitic soil clays. I. Existence of interlayer specific sites. Clay Miner 25:129–139. doi: 10.1180/claymin.1990.025.2.01 CrossRefGoogle Scholar
  19. Delvaux B, Herbillon AJ, Vielvoye L (1990b) Surface properties and clay mineralogy of hydrated halloysitic soil clays. II. Evidence for the presence of halloysite/smectite (H–Sm) mixed-layer clays. Clay Miner 25:141–160. doi: 10.1180/claymin.1990.025.2.02 CrossRefGoogle Scholar
  20. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731. doi: 10.1038/nature03299 CrossRefGoogle Scholar
  21. Déruelle B, Ngounouno S, Demaiffe D (2007) The ‘Cameroon Hot Line’ (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. C R Geosci 339:589–600. doi: 10.1016/j.crte.2007.07.007 CrossRefGoogle Scholar
  22. Ding T, Wan D, Wang C, Zhang F (2004) Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochim Cosmochim Acta 68:205–216. doi: 10.1016/S0016-7037(03)00264-3 CrossRefGoogle Scholar
  23. Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province, China. Chem Geol 218:41–50. doi: 10.1016/j.chemgeo.2005.01.018 CrossRefGoogle Scholar
  24. Ding TP, Zhou JX, Wan DF, Chen ZY, Wang CY, Zhang F (2008) Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochim Cosmochim Acta 72:1381–1395. doi: 10.1016/j.gca.2008.01.008 CrossRefGoogle Scholar
  25. Douthitt CB (1982) The geochemistry of the stable isotopes of silicon. Geochim Cosmochim Acta 46:1449–1458. doi: 10.1016/0016-7037(82)90278-2 CrossRefGoogle Scholar
  26. Faure G (1991) Principles and application of inorganic geochemistry. MacMillan, New York, p 626Google Scholar
  27. Georg RB, Reynolds BC, Frank M, Halliday AN (2006) Mechanisms controlling the silicon isotopic compositions of river waters. Earth Planet Sci Lett 249:290–306. doi: 10.1016/j.epsl.2006.07.006 CrossRefGoogle Scholar
  28. Georg RB, Reynolds BC, West AJ, Burton KW, Halliday AN (2007) Silicon isotope variations accompanying basalt weathering in Iceland. Earth Planet Sci Lett 261:476–490. doi: 10.1016/j.epsl.2007.07.004 CrossRefGoogle Scholar
  29. Henriet C (2008) Silicon in banana (Musa spp.): a soil-plant system approach. PhD Thesis, Université catholique de Louvain, Faculté d’ingénierie biologique, agronomique et environmentale, no. 119, 249 pGoogle Scholar
  30. Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B (2006) Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil 287:359–374. doi: 10.1007/s11104-006-9085-4 CrossRefGoogle Scholar
  31. Henriet C, Bodarwé L, Dorel M, Draye X, Delvaux B (2008) Leaf silicon content in banana (Musa spp.) reveals the weathering stage of volcanic ash soils in Guadeloupe. Plant Soil 313:71–82. doi: 10.1007/s11104-008-9680-7 CrossRefGoogle Scholar
  32. Herbillon AJ (1986) Chemical estimation of weatherable minerals present in the diagnostic horizons of low activity clay soils. In: Beinroth FH, Camargo MN, Eswaran H (eds) Proceedings of the 8th international soil classification workshop: classification, characterization and utilization of oxisols, Part 1, EMBRAPA, Rio de Janeiro, pp. 39–48Google Scholar
  33. Jauhari OS, Mishra RA, Tewari CB (1974) Nutrient uptake of banana (Musa Paradisiaca) var. Basrai Dwarf. Indian J Agr Chem 7:73–79Google Scholar
  34. Karathanasis AD (2002) Mineral equilibria in environmental soil systems. In: Dixon JB, Weed SB (eds) Soil mineralogy with environmental applications. Soil Science Society of America, Madison, pp 109–151Google Scholar
  35. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397. doi: 10.1016/j.tplants.2006.06.007 CrossRefGoogle Scholar
  36. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A Silicon transporter in rice. Nature 440:688–691. doi: 10.1038/nature04590 CrossRefGoogle Scholar
  37. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212. doi: 10.1038/nature05964 CrossRefGoogle Scholar
  38. Martin D, Sieffermann G (1966) Le département du Mungo (Ouest-Cameroun). Etude des sols et de leur utilisation. Cahiers ORSTOM. Ser Pedologie 4(2):27–49Google Scholar
  39. Martin-Prével P (1984) Bananier. In: Martin-Prével P, Gagnard J, Gautier P (eds) L’analyse végétale dans le contrôle de l’alimentation des plantes tempérées et tropicales. Technique et Documentation. Lavoisier, Paris, pp 715–751Google Scholar
  40. Martin-Prével P, Montagut G (1966) Dynamique de l’azote dans la croissance et le développement du végétal. Fruits 21:283–294Google Scholar
  41. Mehra OP, Jackson ML (1960) Iron oxides removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Proceedings 7th clay conf, clays clay miner, Washington, pp. 317–327Google Scholar
  42. Motomura H, Fujii T, Suzuki M (2004) Silica deposition in relation to ageing of leaf tissues in Sasa veitchii (Carriere) Rehder (Poaceae : Bambusoideae). Ann Bot (Lond) 93:235–248. doi: 10.1093/aob/mch034 CrossRefGoogle Scholar
  43. Moulton KL, West J, Berner RA (2000) Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. Am J Sci 300:539–570. doi: 10.2475/ajs.300.7.539 CrossRefGoogle Scholar
  44. Nkouathio DG, Menard JJ, Wandji P, Bardintzeff JM (2002) The Tombel graben (West Cameroon): a recent monogenetic volcanic field of the Cameroon Line. J Afr Earth Sci 35:285–300. doi: 10.1016/S0899-5362(02)00031-3 CrossRefGoogle Scholar
  45. Opfergelt S, Cardinal D, Henriet C, Draye X, André L, Delvaux B (2006a) Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device. Plant Soil 285:333–345. doi: 10.1007/s11104-006-9019-1 CrossRefGoogle Scholar
  46. Opfergelt S, Cardinal D, Henriet C, André L, Delvaux B (2006b) Silicon isotope fractionation between plant parts in banana: in situ vs. in vitro. J Geochem Explor 88:224–227. doi: 10.1016/j.gexplo.2005.08.044 CrossRefGoogle Scholar
  47. Powell JJ, Mcnaughton SA, Jugdaohsingh R, Anderson SHC, Dear J, Khot F, Mowatt L, Gleason KL, Sykes M, Thompson RPH, Bolton-Smith C, Hodson MJ (2005) A provisional database for the silicon content of foods in the United Kingdom. Br J Nutr 94:804–812. doi: 10.1079/BJN20051542 CrossRefGoogle Scholar
  48. Ragueneau O, Savoye N, Del Amo Y, Cotten J, Tardiveau B, Leynaert A (2005) A new method for the measurement of biogenic silica in suspended matter of coastal waters: using Si:Al ratios to correct for the mineral interference. Cont Shelf Res 25:697–710. doi: 10.1016/j.csr.2004.09.017 CrossRefGoogle Scholar
  49. Rai D, Kittrick JA (1989) Mineral equilibria and the soil system. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc Am, Madison, pp 161–198Google Scholar
  50. Raven JA (1983) The transport and function of silicon plants. Biol Rev Camb Philos Soc 58:179–207. doi: 10.1111/j.1469-185X.1983.tb00385.x CrossRefGoogle Scholar
  51. Reynolds BC, Aggarwal J, André L, Baxter D, Beucher C, Brzezinski MA, Engström E, Georg B, Land M, Leng MJ, Opfergelt S, Rodushkin I, Sloane HJ, Van den Boorn SHJM, Vroon PZ, Cardinal D (2007) An inter-laboratory comparison of Si isotope reference materials. J Anal At Spectrom 22:561–568. doi: 10.1039/b616755a CrossRefGoogle Scholar
  52. Rouiller J, Burtin G, Souchier B (1972) La dispersion des sols dans l’analyse granulométrique. Méthode utilisant les résines échangeuses d’ions. ENSAIA Nancy 14:194–205Google Scholar
  53. Rufyikiri G, Nootens D, Dufey JE, Delvaux B (2004) Mobilization of aluminium and magnesium by roots of banana (Musa spp.) from kaolinite and smectite clay minerals. Appl Geochem 19:633–643. doi: 10.1016/j.apgeochem.2003.07.001 CrossRefGoogle Scholar
  54. Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150:25–32CrossRefGoogle Scholar
  55. Sun L, Wu LH, Ding TP, Tian SH (2008) Silicon isotope fractionation in rice plants, an experimental study in rice growth under hydroponic conditions. Plant Soil 304:291–300. doi: 10.1007/s11104-008-9552-1 CrossRefGoogle Scholar
  56. Volk T (1987) Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am J Sci 287:763–779Google Scholar
  57. Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66:1095–1104. doi: 10.1016/S0016-7037(01)00832-8 CrossRefGoogle Scholar
  58. Ziegler K, Chadwick OA, Brzezinski MA, Kelly EF (2005a) Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochim Cosmochim Acta 69:4597–4610. doi: 10.1016/j.gca.2005.05.008 CrossRefGoogle Scholar
  59. Ziegler K, Chadwick OA, White AF, Brzezinski MA (2005b) δ30Si systematics in a granitic saprolite, Puerto Rico. Geology 33:817–820. doi: 10.1130/G21707.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. Opfergelt
    • 1
    • 2
  • B. Delvaux
    • 1
  • L. André
    • 2
  • D. Cardinal
    • 2
  1. 1.Soil Science UnitUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of Geology and MineralogyMusée Royal de l’Afrique CentraleTervurenBelgium

Personalised recommendations