, Volume 91, Issue 2–3, pp 133–150

Riparian zone denitrification affects nitrogen flux through a tidal freshwater river

  • Scott H. Ensign
  • Michael F. Piehler
  • Martin W. Doyle


Tidal freshwater zones (TFZ) of coastal rivers link terrestrial watersheds to the ocean and are characterized by large, regularly inundated riparian zones. We investigated the effect of riparian denitrification on nitrogen flux in the TFZ Newport River, North Carolina (U.S.A.) by developing an empirical model of denitrification and parameterizing it using measured denitrification rates, sediment oxidation-reduction potential dynamics, and riparian topography. Denitrification rates were measured monthly in laboratory-incubated sediment cores by using a membrane inlet mass spectrometer to assess net water-borne N2 flux from the cores. Annual average rates of denitrification in three intertidal riparian habitats, emergent marsh, mudflat, and hardwood forest, were 1864, 1956, and 2018 μg m−2 h−1, respectively. Laboratory experiments and in-situ monitoring revealed that the temporal lag between tidal inundation and reduced, denitrifying conditions was 4–5 h. Field measurements and remotely sensed data showed that the inundated surface area during high tide was three times greater than that at low tide. By combining data on denitrification, oxidation-reduction potential, and topography, the model predicted that the daily denitrification flux constituted 2–15% of the daily riverine nitrate flux during most of the year and >100% during low discharge periods. Current regional and global nitrogen budgets thus may overestimate nitrogen delivery to the ocean by not accounting for the TFZ denitrification.


Denitrification Tidal freshwater zone Riparian floodplain River nitrogen budget 



Tidal freshwater zone


University of North Carolina Institute of Marine Sciences


Light image detection And ranging


Triangulated irregular network


  1. Bowden WB, Vörösmarty CJ, Morris JT, Peterson BJ, Hobbie JE, Steudler PA, Moore B (1991) Transport and processing of nitrogen in a tidal freshwater wetland. Water Resour Res 27:389–408. doi:10.1029/90WR02614 CrossRefGoogle Scholar
  2. Boyer EW, Alexander RB, Parton WJ, Li C, Butterbach-Bahl K, Donner SD, Skaggs RW, Del Grosso SJ (2006) Modeling denitrification in terrestrial and aquatic ecosystems at regional scales. Ecol Appl 16(6):2123–2142. doi:10.1890/1051-0761(2006)016[2123:MDITAA]2.0.CO;2 CrossRefGoogle Scholar
  3. Cornwell JC, Kemp WM, Kana TM (1999) Denitrification in coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquat Ecol 33:41–54. doi:10.1023/A:1009921414151 CrossRefGoogle Scholar
  4. Destouni G, Hannerz F, Prieto C, Jarsjö J, Shibuo Y (2008) Small unmonitored near-coastal catchment areas yielding large mass loading to the sea. Global Biogeochem Cycles. doi:10.1029/2008GB003287
  5. Eyre BD, Rysgaard S, Dalsgaard T, Christensen PB (2002) Comparison of isotope pairing and N2:Ar methods for measuring sediment denitrification—assumptions, modifications, and implications. Estuaries 25(6A):1077–1087. doi:10.1007/BF02692205 CrossRefGoogle Scholar
  6. Faulkner SP, Patrick WH (1992) Redox processes and diagnostic wetland soil indicators in bottomland hardwood forest. Soil Sci Soc Am J 56:856–865Google Scholar
  7. Fear JM, Thompson SP, Gallo TE, Paerl HW (2005) Denitrification rates measured along a salinity gradient in the eutrophic Neuse River Estuary, North Carolina, USA. Estuaries 28(4):608–619. doi:10.1007/BF02696071 CrossRefGoogle Scholar
  8. Forshay KJ, Stanley EH (2005) Rapid nitrate loss and denitrification in a temperate river floodplain. Biogeochemistry 75:43–64. doi:10.1007/s10533-004-6016-4 CrossRefGoogle Scholar
  9. Garcia-Ruiz R, Pattinson SN, Whitton BA (1998) Kinetic parameters of denitrification in a river continuum. Appl Environ Microbiol 64:2533–2538Google Scholar
  10. Green PA, Vörösmarty CJ, Meybeck M, Galloway JN, Peterson BJ, Boyer EW (2004) Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology. Biogeochemistry 68:71–105. doi:10.1023/B:BIOG.0000025742.82155.92 CrossRefGoogle Scholar
  11. Gribsholt B, Boschker HTS, Struyf E, Andersson M, Tramper A, De Brabandere L, van Damme S, Brion N, Meire P, Dehairs F, Middleburg JJ, Heip CHR (2005) Nitrogen processing in a tidal freshwater marsh: a whole-ecosystem 15 N labeling study. Limnol Oceanogr 50(6):1945–1959Google Scholar
  12. Gribsholt B, Struyf E, Tramper A, Andersson MGI, Brion N, De Brabandere L, van Damme S, Meire P, Middelburg JJ, Dehairs F, Boschker HTS (2006) Ammonium transformation in a nitrogen-rich tidal freshwater marsh. Biogeochemistry 80:289–298. doi:10.1007/s10533-006-9024-8 CrossRefGoogle Scholar
  13. Gribsholt B, Struyf E, Tramper A, De Brabandere L, Brion N, van Damme S, Meire P, Dehairs F, Middelburg JJ, Boschker HTS (2007) Nitrogen assimilation and short term retention in a nutrient-rich tidal freshwater marsh—a whole ecosystem 15 N enrichment study. Biogeosciences 4(11):11–26Google Scholar
  14. Groffman PM, Altabet MA, Bohlke JK, Butterback-Bahl K, David MB, Firestone MK, Giblin AE, Kana TM, Nielsen LP, Voytek MA (2006) Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol Appl 16:2091–2122. doi:10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2 CrossRefGoogle Scholar
  15. Kana T, Weiss DL (2004) Comment on “comparison of isotope pairing and N2:Ar methods for measuring sediment denitrification” by BD Eyre, S Rysgaard, T Dalsgaard, and PB Christensen (2002) Estuaries 25:1077–1087. Estuaries 27:173–176. doi:10.1007/BF02803571 CrossRefGoogle Scholar
  16. Kana T, Darkangelo C, Hunt D, Oldham J, Bennet G, Cornwell J (1994) Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal Chem 66:4166–4170. doi:10.1021/ac00095a009 CrossRefGoogle Scholar
  17. Kerner M, Kausch H, Miehlich G (1990) The effect of tidal action on the transformations of nitrogen in freshwater tidal flat sediments. Arch Hydrobiol Suppl 75:251–271Google Scholar
  18. Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. WH Freeman, San FranciscoGoogle Scholar
  19. Lide (2004) Handbook of chemistry and physics. CRC, Boca RatonGoogle Scholar
  20. Lindau CW, DeLaune RD, Pardue JH (1994) Inorganic nitrogen processing and assimilation in a forested wetland. Hydrobiologia 277:171–178Google Scholar
  21. Machefert SE, Dise NB (2004) Hydrological controls on denitrification in riparian ecosystems. Hydrol Earth Syst Sci 8:686–694CrossRefGoogle Scholar
  22. McCarthy MJ, Lavrentyev PJ, Yang L, Zhang L, Chen Y, Qin B, Gardner WS (2007) Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). Hydrobiologia 581:195–207. doi:10.1007/s10750-006-0496-2 CrossRefGoogle Scholar
  23. Mulholland PJ et al (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–206. doi:10.1038/nature06686 CrossRefGoogle Scholar
  24. Neubauer SC, Anderson IC, Neikirk BB (2005) Nitrogen cycling and ecosystem exchanges in a Virginia tidal freshwater marsh. Estuaries 28(6):909–922. doi:10.1007/BF02696019 CrossRefGoogle Scholar
  25. Orr CH, Stanley EH, Wilson KA, Finlay JC (2007) Effects of restoration and reflooding on soil denitrification in a leveed Midwestern floodplain. Ecol Appl 17(8):2365–2376. doi:10.1890/06-2113.1 CrossRefGoogle Scholar
  26. Phillips JD (1997) A short history of a flat place: three centuries of geomorphic change in the Croatan National Forest. Ann Assoc Am Geogr 87(2):197–216. doi:10.1111/0004-5608.872050 CrossRefGoogle Scholar
  27. Pinay G, Ruffinoni C, Fabre A (1995) Nitrogen cycling in two riparian forest soils under different geomorphic conditions. Biogeochemistry 30:9–29. doi:10.1007/BF02181038 CrossRefGoogle Scholar
  28. Pinay G, Black VJ, Planty-Tabacchi AM, Gumiero B, DéCamps H (2000) Geomorphic control of denitrification in large floodplain soils. Biogeochemistry 50:163–182. doi:10.1023/A:1006317004639 CrossRefGoogle Scholar
  29. Pinay G, Gumiero B, Tabacchi E, Gimenez O, Tabacchi-Planty AM, Hefting MM, Burt TP, Black VA, Nilsson C, Iordache V, Bureau F, Vought L, Petts GE, DéCamps H (2007) Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshw Biol 52:252–266. doi:10.1111/j.1365-2427.2006.01680.x CrossRefGoogle Scholar
  30. Schuchardt B, Haesloop U, Schirmer M (1993) The tidal freshwater reach of the Weser Estuary: riverine or estuarine? Neth J Aquat Ecol 27:215–226. doi:10.1007/BF02334785 CrossRefGoogle Scholar
  31. Seitzinger S, Harrison JA, Bohlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090. doi:10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 CrossRefGoogle Scholar
  32. Seybold CA, Mersie W, Huang JY, McNamee C (2002) Soil oxidation-reduction potential, pH, temperature, and water-table patterns of a freshwater tidal wetland. Wetlands 22:149–158. doi:10.1672/0277-5212(2002)022[0149:SRPTAW]2.0.CO;2 CrossRefGoogle Scholar
  33. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196. doi:10.1016/S0269-7491(99)00091-3 CrossRefGoogle Scholar
  34. Tockner K, Pennetzdofer D, Reiner N, Schiemer F, Ward JV (1999) Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshw Biol 41:521–535. doi:10.1046/j.1365-2427.1999.00399.x CrossRefGoogle Scholar
  35. Valett HM, Baker MA, Morrice JA, Crawford CS, Molles MC, Dahm CN, Moyer DL, Thibault JR, Ellis LM (2005) Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain. Ecology 86(1):220–234. doi:10.1890/03-4091 CrossRefGoogle Scholar
  36. van Bochove E, Beauchemin S, Theriault G (2002) Continuous multiple measurement of soil oxidation-reduction potential using platinum microelectrodes. Soil Sci Soc Am J 66:1813–1820CrossRefGoogle Scholar
  37. Verhoeven JTA, Whigham DF, van Logtestijn R, O’Neill J (2001) A comparitive study of nitrogen and phosphorus cycling in tidal and non-tidal riverine wetlands. Wetlands 2:210–222. doi:10.1672/0277-5212(2001)021[0210:ACSONA]2.0.CO;2 CrossRefGoogle Scholar
  38. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750Google Scholar
  39. Wollheim WM, Vörösmarty CJ, Peterson BJ, Seitzinger SP, Hopkinson CS (2006) Relationship between river size and nutrient removal. Geophys Res Lett. doi:10.1029/2006GL025845
  40. Wollheim WM, Vörösmarty CJ, Bouwman AF, Green P, Harrison J, Linder E, Peterson BJ, Seitzinger SP, Syvitski JPM (2008) Global N removal by freshwater aquatic systems using a spatially distributed, within-basin approach. Global Biogeochem Cycles. doi:10.1029/2007GB002963

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Scott H. Ensign
    • 1
    • 2
  • Michael F. Piehler
    • 2
  • Martin W. Doyle
    • 3
  1. 1.Curriculum in EcologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Institute of Marine SciencesUniversity of North Carolina at Chapel HillMorehead CityUSA
  3. 3.Department of GeographyUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations