Biogeochemistry

, Volume 91, Issue 1, pp 13–35

Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments

  • Chris D. Evans
  • Christine L. Goodale
  • Simon J. M. Caporn
  • Nancy B. Dise
  • Bridget A. Emmett
  • Ivan J. Fernandez
  • Chris D. Field
  • Stuart E. G. Findlay
  • Gary M. Lovett
  • Henning Meesenburg
  • Filip Moldan
  • Lucy J. Sheppard
Article

Abstract

Dissolved organic carbon (DOC) concentrations have risen in upland waters across large areas of Europe and North America. Two proposed drivers of these increases are (1) deposition of atmospheric pollutant nitrogen (N) with consequent effects on plant and decomposer carbon dynamics, and (2) soil recovery from acidification associated with decreasing sulphur deposition. Examination of 12 European and North American field N addition experiments showed inconsistent (positive, neutral, and negative) responses of DOC to N addition. However, responses were linked to the form of N added and to resulting changes in soil acidity. Sodium nitrate additions consistently increased DOC, whereas ammonium salts additions usually decreased DOC. Leachate chemistry was used to calculate an index of “ANC forcing” of the effect of fertilization on the acid-base balance, which showed that DOC increased in response to all de-acidifying N additions, and decreased in response to all but three acidifying N additions. Exceptions occurred at two sites where N additions caused tree mortality, and one experiment located on an older, unglaciated soil with high anion adsorption capacity. We conclude that collectively these experiments do not provide clear support for the role of N deposition as the sole driver of rising DOC, but are largely consistent with an acidity-change mechanism. It is however possible that the unintended effect of acidity change on DOC mobility masks genuine effects of experimental N enrichment on DOC production and degradation. We suggest that there is a need, more generally, for interpretation of N manipulation experiments to take account of the effects that experimentally-induced changes in acidity, rather than elevated N per se, may have on ecosystem biogeochemistry.

Keywords

Nitrogen Acidity ANC Forcing Atmospheric deposition Dissolved organic carbon Manipulation experiments 

References

  1. Aber JD (1992) Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol Evol 7:220–224. doi:10.1016/0169-5347(92)90048-G CrossRefGoogle Scholar
  2. Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems: excess nitrogen from fossil fuel combustion may stress the biosphere. Bioscience 39:378–386. doi:10.2307/1311067 CrossRefGoogle Scholar
  3. Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934. doi:10.2307/1313296 CrossRefGoogle Scholar
  4. Aber JD, Goodale CL, Ollinger SV, Smith M-L, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of Northeastern forests? Bioscience 53:375–389. doi:10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2 CrossRefGoogle Scholar
  5. Adams MB, DeWalle DR, Hom JL (2006) The Fernow watershed acidification study. Springer, Dordrecht, 279 ppGoogle Scholar
  6. Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25. doi:10.1139/er-5-1-1 CrossRefGoogle Scholar
  7. Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Glob Biogeochem Cycl 18:GB1024. doi:10.1029/2003GB002058
  8. Bowman WD, Gartner JR, Holland K, Wiedermann M (2006) Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet? Ecol Appl 16:1183–1193. doi:10.1890/1051-0761(2006)016[1183:NCLFAV]2.0.CO;2 CrossRefGoogle Scholar
  9. Bragazza L, Freeman C, Jones T, Rydin H, Lilmpense J, Fenner N, Ellis T, Gerdola R, Hajek M, Hajek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA 103:19386–19389. doi:10.1073/pnas.0606629104 CrossRefGoogle Scholar
  10. Clark JM, Chapman PJ, Adamson JK, Lane SN (2005) Influence of drought induced acidification on the mobility of dissolved organic carbon in peat soils. Glob Chang Biol 11:791–809. doi:10.1111/j.1365-2486.2005.00937.x CrossRefGoogle Scholar
  11. Cooper DM (2005) Evidence of sulphur and nitrogen deposition signals at the United Kingdom acid waters monitoring network sites. Environ Pollut 137:41–54. doi:10.1016/j.envpol.2004.12.030 CrossRefGoogle Scholar
  12. Corre MD, Beese FO, Brumme R (2003) Soil nitrogen cycle in high nitrogen deposition forest: changes under nitrogen saturation and liming. Ecol Appl 13:287–298. doi:10.1890/1051-0761(2003)013[0287:SNCIHN]2.0.CO;2 CrossRefGoogle Scholar
  13. Cronan CS, Aiken GR (1985) Chemistry and transport of humic substances in forested watersheds of the Adirondack Park, New York. Geochim Cosmochim Acta 49:1697–1705. doi:10.1016/0016-7037(85)90140-1 CrossRefGoogle Scholar
  14. Curtis CJ (1998) Climatic and hydrologic control of DOM concentration and quality in lakes. In: Hessen D (ed) Aquatic humic substances: ecological studies, vol 133. Springer, Berlin, pp 93–105Google Scholar
  15. David M, Vance G, Kahl J (1999) Chemistry of dissolved organic carbon at Bear Brook watershed, Maine: stream water response to (NH4)2SO4 additions. Environ Monit Assess 55:149–163. doi:10.1023/A:1006150525494 CrossRefGoogle Scholar
  16. De Vries W, Reinds GJ, Gundersen P, Sterba H (2006) The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biol 12:1151–1173CrossRefGoogle Scholar
  17. Driscoll CT, Driscoll KM, Roy KM, Mitchell MJ (2003) Chemical response of lakes in the Adirondack region of New York to declines in acid deposition. Environ Sci Technol 37:2036–2042. doi:10.1021/es020924h CrossRefGoogle Scholar
  18. Elvir JA, Rustad LG, Wiersma B, Fernandez I, White AS, White GJ (2005) Eleven-year response of foliar chemistry to chronic nitrogen and sulfur additions at the Bear Brook Watershed in Maine. Can J Res 35:1402–1410. doi:10.1139/x05-072 CrossRefGoogle Scholar
  19. Emmett BA, Brittain SA, Hughes S, Kennedy V (1995) Nitrogen additions (NaNO3 and NH4NO3) at Aber Forest, Wales: I. response of throughfall and soil water chemistry. For Ecol Manag 71:45–59CrossRefGoogle Scholar
  20. Emmett BA, Reynolds B, Silgram M, Sparks TH, Woods C (1998) The consequences of chronic nitrogen additions on N cycling and soilwater chemistry in a Sitka spruce stand. N Wales For Ecol Manag 101:165–175Google Scholar
  21. Emmett BA, Gordon C, Williams DL, Woods C, Norris D, Bell SA, Pugh B (2001) Grazing/nitrogen deposition interactions in upland acid grassland. Report to the UK Department of the Environment, Transport and the Regions, Centre for Ecology and Hydrology, Bangor, 53 ppGoogle Scholar
  22. Evans CD, Cullen JM, Alewell C, Kopáček J, Marchetto A, Moldan F, Prechtel A, Rogora M, Veselý J, Wright R (2001) Recovery from acidification in European surface waters. Hydrol Earth Syst Sci 5:283–298Google Scholar
  23. Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ Pollut 137:55–71. doi:10.1016/j.envpol.2004.12.031 CrossRefGoogle Scholar
  24. Evans CD, Chapman PJ, Clark JM, Monteith DT, Cresser MS (2006a) Alternative explanations for rising dissolved organic carbon export from organic soils. Glob Chang Biol 12:2044–2053. doi:10.1111/j.1365-2486.2006.01241.x CrossRefGoogle Scholar
  25. Evans CD, Caporn SJM, Carroll JA, Pilkington MG, Wilson DB, Ray N, Cresswell N (2006b) Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition. Environ Pollut 143:468–478. doi:10.1016/j.envpol.2005.12.004 CrossRefGoogle Scholar
  26. Evans CD, Freeman C, Cork LG, Thomas DN, Reynolds B, Billett MF, Garnett MH, Norris D (2007) Evidence against recent climate-induced destabilisation of soil carbon from 14C analysis of riverine dissolved organic matter. Geophys Res Lett 34:L07407. doi:10.1029/2007GL029431 doi:10.1029/2007GL029431
  27. Findlay SEG (2005) Increased carbon transport in the Hudson River: unexpected consequence of nitrogen deposition? Front Ecol Environ 3:133–137CrossRefGoogle Scholar
  28. Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev Camb Philos Soc 63:433–462. doi:10.1111/j.1469-185X.1988.tb00725.x CrossRefGoogle Scholar
  29. Fowler D, Smith R, Muller J, Cape JN, Sutton M, Erisman JW, Fagerli H (2007) Long term trends in sulphur and nitrogen deposition in Europe and the cause of non-linearities. Water Air Soil Pollut Focus 7:41–47. doi:10.1007/s11267-006-9102-x CrossRefGoogle Scholar
  30. Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412:785. doi:10.1038/35090628
  31. Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198. doi:10.1038/nature02707 CrossRefGoogle Scholar
  32. Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in a forest ecosystem. For Ecol Manag 196:159–171. doi:10.1016/j.foreco.2004.03.018 CrossRefGoogle Scholar
  33. Goodale CL, Aber JD, Vitousek PM (2003) An unexpected nitrate decline in New Hampshire streams. Ecosystems (N Y, Print) 6:75–86. doi:10.1007/s10021-002-0219-0 CrossRefGoogle Scholar
  34. Gundersen P, Callesen I, deVries W (1998) Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ Pollut 102:403–407. doi:10.1016/S0269-7491(98)80060-2 CrossRefGoogle Scholar
  35. Hay GW, James JH, Vanloon GW (1985) Solubilization effects of simulated acid rain on the organic matter of forest soil; preliminary results. Soil Sci 139:422–430. doi:10.1097/00010694-198505000-00007 CrossRefGoogle Scholar
  36. Hejzlar J, Dubrovsky M, Buchtele J, Ruzicka M (2003) The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a temperate stream (the Malse River, South Bohemia). Sci Total Environ 310:143–152. doi:10.1016/S0048-9697(02)00634-4 CrossRefGoogle Scholar
  37. Hessen DA, Gjessing ET, Knulst J, Fjeld E (1997) TOC fluctuations in a humic lake as related to catchment acidification, season and climate. Biogeochemistry 36:139–151. doi:10.1023/A:1005740030477 CrossRefGoogle Scholar
  38. Hongve D, Riise G, Kristiansen JF (2004) Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water–a result of increased precipitation? Aquat Sci 66:231–238. doi:10.1007/s00027-004-0708-7 CrossRefGoogle Scholar
  39. Hudson JJ, Dillon PJ, Somers KM (2003) Long-term patterns in dissolved organic carbon in boreal lakes: the role of incident radiation, precipitation, air temperature, southern oscillation and acid deposition. Hydrol Earth Syst Sci 7:390–398Google Scholar
  40. Jefts S, Fernandez IJ, Rustad LE, Dail DB (2004) Decadal responses in soil N dynamics at the Bear Brook Watershed in Maine, USA. For Ecol Manage 189:189–205. doi:10.1016/j.foreco.2003.08.011 CrossRefGoogle Scholar
  41. Kahl J, Norton SA, Fernandez IJ, Rustad L, Handley M (1999) Nitrogen and sulfur input-output budgets in the experimental and reference watersheds, Bear Brook watershed in Maine (BBWM). Environ Monit Assess 55:113–131. doi:10.1023/A:1006162927311 CrossRefGoogle Scholar
  42. Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of organic matter in soils: a review. Soil Sci 165:277–304. doi:10.1097/00010694-200004000-00001 CrossRefGoogle Scholar
  43. Kennedy J, Billett MF, Duthie D, Fraser AR, Harrison AF (1996) Organic matter retention in an upland humic podzol; the effects of pH and solute type. Eur J Soil Sci 47:615–625. doi:10.1111/j.1365-2389.1996.tb01860.x CrossRefGoogle Scholar
  44. Kjønaas OJ, Stuanes AO, Huse M (1998) Effects of weekly nitrogen additions on N cycling in a coniferous forest catchment, Gårdsjön, Sweden. For Ecol Manag 101:227–249CrossRefGoogle Scholar
  45. Kopáček J, Stuchlík E, Hardekopf D (2006) Chemical composition of the Tatra Mountain lakes: recovery from acidification. Biologia 61:S21–S33. doi:10.2478/s11756-006-0117-6 CrossRefGoogle Scholar
  46. Krug EC, Frink CR (1983) Acid rain on acid soil: a new perspective. Science 221:520–525. doi:10.1126/science.221.4610.520 CrossRefGoogle Scholar
  47. Lamontagne S, Schiff SL (1999) The response of a heterogeneous upland boreal shield catchment to a short term NO3 addition. Ecosystems (N Y, Print) 2:460–473. doi:10.1007/s100219900094 CrossRefGoogle Scholar
  48. Macdonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen inputs together with nitrogen enrichment predict nitrate leaching in European forests. Glob Chang Biol 8:1028–1033. doi:10.1046/j.1365-2486.2002.00532.x CrossRefGoogle Scholar
  49. Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Mellillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manag 196:7–28CrossRefGoogle Scholar
  50. Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–851. doi:10.1038/nature05847 CrossRefGoogle Scholar
  51. McDowell WH, Currie WS, Aber JD, Yano Y (1998) Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Pollut 105:175–182. doi:10.1023/A:1005032904590 CrossRefGoogle Scholar
  52. McDowell WH, Magill AH, Aitkenhead-Peterson JA, Aber JD, Merriam J, Kaushal S (2004) Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. For Ecol Manag 196:29–41. doi:10.1016/j.foreco.2004.03.010 CrossRefGoogle Scholar
  53. McNulty SG, Boggs J, Aber JD, Rustad LE, Magill AH (2005) Red spruce ecosystem level changes following 14 years of chronic N fertilization. For Ecol Manag 219:279–291. doi:10.1016/j.foreco.2005.09.004 CrossRefGoogle Scholar
  54. Meesenburg H, Merino A, Meiwes KJ, Beese FO (2004) Effects of long-term application of ammonium sulphate on nitrogen fluxes in a beech ecosystem at Solling, Germany. Water Air Soil Pollut Focus 4:415–426. doi:10.1023/B:WAFO.0000028368.77125.2b CrossRefGoogle Scholar
  55. Meiwes KJ, Merino A, Beese FO (1998) Chemical composition of throughfall, soil water, leaves and leaf litter in a beech forest receiving long term application of ammonium sulphate. Plant Soil 201:217–230. doi:10.1023/A:1004315513482 CrossRefGoogle Scholar
  56. Moldan F, Kjønaas OJ, Stuanes AO, Wright RF (2006) Increased nitrogen in runoff and soil following 13 years of experimentally increased nitrogen deposition to a coniferous-forested catchment at Gårdsjön, Sweden. Environ Pollut 144:612–620. doi:10.1016/j.envpol.2006.01.041 CrossRefGoogle Scholar
  57. Monteith DT, Stoddard JL, Evans CD, de Wit H, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Vesely J (2007) Rising freshwater dissolved organic carbon driven by changes in atmospheric deposition. Nature 450:537–540. doi:10.1038/nature06316 CrossRefGoogle Scholar
  58. Mulder J, van den Burg D, Teminghoff EJM (1994) Depodzolisation due to acid rain: does aluminium complexation affect the solubility of humic substances? In: Senesi M, Miano TM (eds) Humic substances in the environment and implications on human health. Elsevier, pp 1173–1168Google Scholar
  59. Mulder J, de Wit H, Boonen HW, Bakken LR (2001) Increased levels of aluminium in forest soils: effects on the stores of organic carbon. Water Air Soil Pollut 130:989–994. doi:10.1023/A:1013987607826 CrossRefGoogle Scholar
  60. Nadelhoffer KJ, Emmett BA, Gundersen P, Kjønaas OJ, Koopmans CJ, Schleppi P, Tietama A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148. doi:10.1038/18205 CrossRefGoogle Scholar
  61. Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems (N Y, Print) 5:29–48. doi:10.1007/s100210000058 CrossRefGoogle Scholar
  62. Neff JC, Finlay JC, Zimov SA, Davydoc SP, Carrasco JJ, Schur EAG, Davydova AI (2006) Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophys Res Lett 33:L23401. doi:10.1029/2006GL028222
  63. Norton S, Kahl J, Fernandez I, Haines T, Rustad L, Nodvin S, Scofield J, Strickland T, Erickson H, Wigington P, Lee J (1999a) The Bear Brook Watershed, Maine USA (BBWM). Environ Monit Assess 55:7–51CrossRefGoogle Scholar
  64. Norton S, Kahl J, Fernandez I (1999b) Altered soil-soil water interactions inferred from stream water chemistry at an artificially acidified watershed at Bear Brook Watershed, Maine USA. Environ Monit Assess 55:97–111CrossRefGoogle Scholar
  65. Norton SA, Fernandez IJ, Kahl JS, Reinhardt RI (2004) Acidification trends and the evolution of neutralization mechanisms through time at the Bear Brook Watershed in Maine, USA. Water Air Soil Pollut Focus 4:289–310. doi: 10.1023/B:WAFO.0000028361.47662.a4 CrossRefGoogle Scholar
  66. Palmer SM, Hope D, Billett MF, Dawson JJC, Bryant C (2001) Sources of organic and inorganic carbon in aheadwater stream: evidence from carbon isotope studies. Biogeochemistry 52:321–338. doi:10.1023/A:1006447706565 CrossRefGoogle Scholar
  67. Pilkington MG, Caporn SJ, Carroll JA, Cresswell N, Lee JA, Ashenden TW, Brittain SA, Reynolds B, Emmett BA (2005a) Effects of increased deposition of atmospheric nitrogen on an upland moor: leaching of N species and soil solution chemistry. Environ Pollut 135:29–40. doi:10.1016/j.envpol.2004.10.016 CrossRefGoogle Scholar
  68. Pilkington MG, Caporn SJ, Carroll JA, Cresswell N, Lee JA, Brittain SA, Reynolds B, Emmett BA (2005b) Effects of increased deposition of atmospheric nitrogen on an upland moor: nitrogen budgets and nutrient accumulation. Environ Pollut 138:473–484. doi:10.1016/j.envpol.2005.04.011 CrossRefGoogle Scholar
  69. Pregitzer KS, Zak DR, Burton AJ, Ashby JA, MacDonald NW (2004) Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry 68:179–197. doi:10.1023/B:BIOG.0000025737.29546.fd CrossRefGoogle Scholar
  70. Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2007) Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Glob Chang Biol 14:142–153Google Scholar
  71. Reuss JO, Johnson DW (1985) Effect of soil processes on the acidification of water by acid deposition. J Environ Qual 14:26–31Google Scholar
  72. Schindler DW, Bayley SE, Curtis PJ, Parker BR, Stainton MP, Kelly CA (1992) Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. Hydrobiologia 229:1–21Google Scholar
  73. Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG, Stainton MP (1997) Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36:9–28. doi:10.1023/A:1005792014547 CrossRefGoogle Scholar
  74. Sheppard LJ, Crossley A, Leith ID, Hargreaves KJ, Carfrae JA, van Dijk N, Cape JN, Sleep D, Fowler D, Raven JA (2004) An automated wet deposition system to compare the effects of reduced and oxidised N on ombotrophic bog species: practical considerations. Water Air Soil Pollut Focus 4:197–205. doi:10.1007/s11267-004-3030-4 CrossRefGoogle Scholar
  75. Skjelkvåle BL, Stoddard J, Jeffries D, Tørseth K, Høgåsen T, Bowman J, Mannio J, Monteith D, Mosello R, Rogora M, Rzychon D, Vesely J, Wieting J, Wilander A (2005) Regional scale evidence for improvements in surface water chemistry, 1990–2001. Environ Pollut 137:165–176. doi:10.1016/j.envpol.2004.12.023 CrossRefGoogle Scholar
  76. Smemo KA, Zak DR, Pregitzer KS (2006) Chronic experimental NO3- deposition reduces the retention of leaf litter DOC in a northern hardwood forest soil. Soil Biol Biochem 38:1340–1347. doi:10.1016/j.soilbio.2005.09.029 CrossRefGoogle Scholar
  77. Smemo KA, Zak , Pregitzer KS, Burton AJ (2007) Characteristics of DOC exported from northern hardwood forests receiving chronic experimental NO3 deposition. Ecosystems (N Y, Print) 10:369–379. doi:10.1007/s10021-007-9014-2 CrossRefGoogle Scholar
  78. Stoddard JL (1994) Long-term changes in watershed retention of nitrogen: its causes and aquatic consequences. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs. ACS advances in chemistry series no 237, Washington (DC). American Chemical Society, Washington, pp 223–282Google Scholar
  79. Stoddard JL, Karl JS, Deviney FA, DeWalle DR, Driscoll CT, Herlihy AT, Kellogg JH, Murdoch PS, Webb JR, Webster KE (2003) Response of surface water chemistry to the Clean Air Act amendments of 1990. Report EPA 620/R-03/001. United States Environmental Protection Agency, North CarolinaGoogle Scholar
  80. Templer PH, Lovett GM, Weathers KC, Findlay SE, Dawson TE (2005) Influence of tree species on forest nitrogen retention in the Catskill Mountains, New York, USA. Ecosystems (N Y, Print) 8:1–16. doi:10.1007/s10021-004-0230-8 CrossRefGoogle Scholar
  81. Tipping E, Hurley MA (1988) A model of solid-solution interactions in acid organic soils, based on the complexation properties of humic substances. J Soil Sci 39:505–519. doi:10.1111/j.1365-2389.1988.tb01235.x CrossRefGoogle Scholar
  82. Tipping E, Woof C (1990) Humic substances in acid organic soils: modelling their release to the soil solution in terms of humic charge. J Soil Sci 41:573–586. doi:10.1111/j.1365-2389.1990.tb00227.x CrossRefGoogle Scholar
  83. Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD, Steudler PA (2003) Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Glob Chang Biol 9:346–357. doi:10.1046/j.1365-2486.2003.00591.x CrossRefGoogle Scholar
  84. Vestgarden LS, Abrahamsen G, Stuanes AO (2001) Soil solution response to nitrogen and magnesium application in a Scots pine forest. Soil Sci Soc Am J 65:1812–1823CrossRefGoogle Scholar
  85. Vestgarden LS, Nilsen P, Abrahamsen G (2004) Nitrogen cycling in Pinus sylvestris stands exposed to different nitrogen inputs. Scand J For Res 19:38–47. doi:10.1080/02827580310019572 CrossRefGoogle Scholar
  86. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115. doi:10.1007/BF00002772 CrossRefGoogle Scholar
  87. Vogt RD, Ranneklev SB, Mykkelbost TC (1994) The impact of acid treatment on soilwater chemistry at the HUMEX site. Environ Int 20:277–286. doi:10.1016/0160-4120(94)90111-2 CrossRefGoogle Scholar
  88. Vuorenmaa J, Forsius M, Mannio J (2006) Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003. Sci Total Environ 365:47–65. doi:10.1016/j.scitotenv.2006.02.038 CrossRefGoogle Scholar
  89. Waldrop MP, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 6:921–933CrossRefGoogle Scholar
  90. Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177. doi:10.1890/03-5120 CrossRefGoogle Scholar
  91. Wallace ZP, Lovett GM, Hart JE, Machona B (2007) Effects of nitrogen saturation on tree growth and death in a mixed-oak forest. For Ecol Manag 243:210–218CrossRefGoogle Scholar
  92. Whitehead DL, Dibb H, Hartley RD (1981) Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter. Soil Biol Biochem 13:343–348. doi:10.1016/0038-0717(81)90074-2 CrossRefGoogle Scholar
  93. Worrall F, Harriman R, Evans CD, Watts CD, Adamson J, Neal C, Tipping E, Burt T, Grieve I, Monteith D, Naden PS, Nisbet T, Reynolds B, Stevens P (2004a) Trends in dissolved organic carbon in UK rivers and lakes. Biogeochemistry 70:369–402. doi:10.1007/s10533-004-8131-7 CrossRefGoogle Scholar
  94. Worrall F, Burt T, Adamson J (2004b) Can climate change explain increases in DOC flux from upland peat catchments? Sci Total Environ 326:95–112. doi:10.1016/j.scitotenv.2003.11.022 CrossRefGoogle Scholar
  95. Worrall F, Burt T, Adamson J (2006) Do nitrogen inputs stimulate dissolved organic carbon production in upland peat bogs? Global Biogeochem Cycles 20:GB3013. doi:10.1029/2005GB002524 doi:10.1029/2005GB002524
  96. WRB (2006) World reference base for soil resources 2006, 2nd edn. World Soil Resources Reports No. 103. FAO, RomeGoogle Scholar
  97. Wright RF, Alewell C, Cullen J, Evans C, Marchetto A, Moldan F, Prechtel A, Rogora M (2001) Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrol Earth Syst Sci 5:299–310CrossRefGoogle Scholar
  98. Yano Y, McDowell WH, Aber JD (2000) Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition. Soil Biol Biochem 32:1743–1751. doi:10.1016/S0038-0717(00)00092-4 CrossRefGoogle Scholar
  99. Zak DR, Holmes WE, Tomlinson MJ, Pregitzer KS, Burton AJ (2006) Microbial cycling of C and N in northern hardwood forests receiving chronic atmospheric NO3- deposition. Ecosystems 9:242–253CrossRefGoogle Scholar
  100. Zech W, Guggenberger G, Schulten H-R (1994) Budgets and chemistry of dissolved organic carbon in forest soil: effects of anthropogenic soil acidification. Sci Total Environ 152:49–62. doi:10.1016/0048-9697(94)90550-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Chris D. Evans
    • 1
  • Christine L. Goodale
    • 2
  • Simon J. M. Caporn
    • 3
  • Nancy B. Dise
    • 3
  • Bridget A. Emmett
    • 1
  • Ivan J. Fernandez
    • 4
  • Chris D. Field
    • 3
  • Stuart E. G. Findlay
    • 5
  • Gary M. Lovett
    • 5
  • Henning Meesenburg
    • 6
  • Filip Moldan
    • 7
  • Lucy J. Sheppard
    • 8
  1. 1.Centre for Ecology and HydrologyEnvironment Centre WalesBangorUK
  2. 2.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  3. 3.Department of Environmental and Geographical SciencesManchester Metropolitan UniversityManchesterUK
  4. 4.Department of Ecology and Environmental SciencesUniversity of MaineOronoUSA
  5. 5.Institute of Ecosystem StudiesMillbrookUSA
  6. 6.Forest Research Institute of Lower SaxonyGöttingenGermany
  7. 7.IVL Swedish Environmental Research InstituteGothenburgSweden
  8. 8.Centre for Ecology and HydrologyPenicuik, MidlothianUK

Personalised recommendations