Biogeochemistry

, Volume 90, Issue 3, pp 291–308

Distribution of ecosystem C and N within contrasting vegetation types in a semiarid rangeland in the Great Basin, USA

  • Toby D. Hooker
  • John M. Stark
  • Urszula Norton
  • A. Joshua Leffler
  • Michael Peek
  • Ron Ryel
Article

Abstract

Semiarid sagebrush ecosystems are being transformed by wildfire, rangeland improvement techniques, and exotic plant invasions, but the effects on ecosystem C and N dynamics are poorly understood. We compared ecosystem C and N pools to 1 m depth among historically grazed Wyoming big sagebrush, introduced perennial crested wheatgrass, and invasive annual cheatgrass communities, to examine whether the quantity and quality of plant inputs to soil differs among vegetation types. Natural abundance δ15N isotope ratios were used to examine differences in ecosystem N balance. Sagebrush-dominated sites had greater C and N storage in plant biomass compared to perennial or annual grass systems, but this was predominantly due to woody biomass accumulation. Plant C and N inputs to soil were greatest for cheatgrass compared to sagebrush and crested wheatgrass systems, largely because of slower root turnover in perennial plants. The organic matter quality of roots and leaf litter (as C:N ratios) was similar among vegetation types, but lignin:N ratios were greater for sagebrush than grasses. While cheatgrass invasion has been predicted to result in net C loss and ecosystem degradation, we observed that surface soil organic C and N pools were greater in cheatgrass and crested wheatgrass than sagebrush-dominated sites. Greater biomass turnover in cheatgrass and crested wheatgrass versus sagebrush stands may result in faster rates of soil C and N cycling, with redistribution of actively cycled N towards the soil surface. Plant biomass and surface soil δ15N ratios were enriched in cheatgrass and crested wheatgrass relative to sagebrush-dominated sites. Source pools of plant available N could become 15N enriched if faster soil N cycling rates lead to greater N trace gas losses. In the absence of wildfire, if cheatgrass invasion does lead to degradation of ecosystem function, this may be due to faster nutrient cycling and greater nutrient losses, rather than reduced organic matter inputs.

Keywords

Invasive species (cheatgrass) Ecosystem C and N storage δ15N natural abundance isotope ratio Sagebrush rangeland 

References

  1. Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C et al (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cycles 17:1031. doi:10.1029/2002GB001903 CrossRefGoogle Scholar
  2. Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113:519–529. doi:10.1007/s004420050405 CrossRefGoogle Scholar
  3. Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558. doi:10.1038/nature05038 CrossRefGoogle Scholar
  4. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235. doi:10.1007/s00442-004-1519-1 CrossRefGoogle Scholar
  5. Belnap J, Phillips SL (2001) Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol Appl 11:1261–1275. doi:10.1890/1051-0761(2001)011[1261:SBIAUG]2.0.CO;2 CrossRefGoogle Scholar
  6. Bilbrough CJ, Caldwell MM (1997) Exploitation of springtime ephemeral N pulses by six Great Basin plant species. Ecology 78:231–243Google Scholar
  7. Billings WD (1992) Ecological impacts of cheatgrass and resultant fire on ecosystems in the western Great Basin. In: Monsen SB, Kitchen SG (eds) Proceedings ecology and management of annual rangelands. USDA Forest Service, Intermountain Research Station, Boise, pp 22–30Google Scholar
  8. Booth MS, Stark JM, Caldwell MM (2003) Inorganic N turnover and availability in annual- and perennial-dominated soils in a northern Utah shrub-steppe ecosystem. Biogeochemistry 66:311–330. doi:10.1023/B:BIOG.0000005340.47365.61 CrossRefGoogle Scholar
  9. Bowden WB (1986) Gaseous nitrogen emissions from undisturbed terrestrial ecosystems—an assessment of their impacts on local and global nitrogen budgets. Biogeochemistry 2:249–279. doi:10.1007/BF02180161 CrossRefGoogle Scholar
  10. Bradley BA, Houghton RA, Mustard JF, Hamburg SP (2006) Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob Change Biol 12:1815–1822. doi:10.1111/j.1365-2486.2006.01232.x CrossRefGoogle Scholar
  11. Brandt LA, King JY, Milchunas DG (2007) Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Glob Change Biol 13:2193–2205. doi:10.1111/j.1365-2486.2007.01428.x CrossRefGoogle Scholar
  12. Brenner DL, Amundson R, Baisden WT, Kendall C, Harden J (2001) Soil N and 15N variation with time in a California annual grassland ecosystem. Geochim Cosmochim 65:4171–4186. doi:10.1016/S0016-7037(01)00699-8 CrossRefGoogle Scholar
  13. Brevedan RE, Busso CA, Montani T, Fernandez OA (1996) Production and nitrogen cycling in an ecosystem of Eragrostis curvula in semiarid Argentina. 2. Nitrogen content and transfers. Acta Oecol 17:211–223Google Scholar
  14. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  15. Brooks ML, Pyke DA (2001) Invasive plants and fire in the deserts of North America. In: Galley KEM, Wilson TP (eds) Proceedings of the invasive species workshop: the role of fire in the control and spread of invasive species. Fire conference 2000: the first national congress on fire ecology, prevention, and mamagement. Misc. Pub. No. 11, Till Timbers Research Station, Tallahassee, pp 1–14Google Scholar
  16. Burke IC (1989) Control of nitrogen mineralization in a sagebrush steppe landscape. Ecology 70:1115–1126. doi:10.2307/1941380 CrossRefGoogle Scholar
  17. Cabrera ML, Beare MH (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J 57:1007–1012Google Scholar
  18. Caldwell MM, White RS, Moore RT, Camp LB (1977) Carbon balance, productivity, and water use of cold-winter desert shrub communities dominated by C3 and C4 species. Oecologia 29:275–300. doi:10.1007/BF00345803 CrossRefGoogle Scholar
  19. Carrera AL, Bertiller MB, Sain CK, Mazzarino MJ (2003) Relationship between plant nitrogen conservation strategies and the dynamics of soil nitrogen in the arid Patagonian Monte, Argentina. Plant Soil 255:595–604. doi:10.1023/A:1026087419155 CrossRefGoogle Scholar
  20. Chapin FS, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE et al (1997) Biotic control over the functioning of ecosystems. Science 277:500–504. doi:10.1126/science.277.5325.500 CrossRefGoogle Scholar
  21. Charley JL, West NE (1977) Micro-patterns of nitrogen mineralization activity in soils of some shrub-dominated semi-desert ecosystems of Utah. Soil Biol Biochem 9:357–365. doi:10.1016/0038-0717(77)90010-4 CrossRefGoogle Scholar
  22. Chen J, Stark JM (2000) Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil. Soil Biol Biochem 32:47–57. doi:10.1016/S0038-0717(99)00124-8 CrossRefGoogle Scholar
  23. Cui MY, Caldwell MM (1997) A large ephemeral release of nitrogen upon wetting of dry soil and corresponding root responses in the field. Plant Soil 191:291–299. doi:10.1023/A:1004290705961 CrossRefGoogle Scholar
  24. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87Google Scholar
  25. Davidson EA, Stark JM, Firestone MK (1990) Microbial production and consumption of nitrate in an annual grassland. Ecology 71:1968–1975. doi:10.2307/1937605 CrossRefGoogle Scholar
  26. Duke S, Caldwell MM (2001) Nitrogen acquisition from different spatial distributions by six Great Basin plant species. N Am Nat 61:93–102Google Scholar
  27. Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126. doi:10.1016/S1360-1385(01)01889-1 CrossRefGoogle Scholar
  28. Evans RD, Belnap J (1999) Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80:150–160CrossRefGoogle Scholar
  29. Evans RD, Black RA (1993) Growth, photosynthesis, and resource investment for vegetative and productive modules of Artemisia tridentata. Ecology 74:1516–1528. doi:10.2307/1940079 CrossRefGoogle Scholar
  30. Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle in aridlands? Evidence from δ15N of soils. Oecologia 94:314–317. doi:10.1007/BF00317104 CrossRefGoogle Scholar
  31. Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol Appl 11:1301–1310. doi:10.1890/1051-0761(2001)011[1301:EPIAND]2.0.CO;2 CrossRefGoogle Scholar
  32. Eviner VT (2004) Plant traits that influence ecosystem processes vary independently among species. Ecology 85:2215–2229. doi:10.1890/03-0405 CrossRefGoogle Scholar
  33. Firestone MK, Davidson E (1989) Microbial basis of NO and N2O production and consumption. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between ecosystems and atmosphere. Wiley, New York, pp 7–21Google Scholar
  34. Fransden WH (1983) Modeling big sagebrush as a fuel. J Range Manage 36:596–600. doi:10.2307/3898349 CrossRefGoogle Scholar
  35. Gill RA, Burke IC (2002) Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppe. Plant Soil 241:233–242. doi:10.1023/A:1016146805542 CrossRefGoogle Scholar
  36. Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31. doi:10.1046/j.1469-8137.2000.00681.x CrossRefGoogle Scholar
  37. Gilmanov TG, Johnson DA, Saliendra NZ (2003) Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: bowen ratio/energy balance measurements and modeling. Basic Appl Ecol 4:167–183. doi:10.1078/1439-1791-00144 CrossRefGoogle Scholar
  38. Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagents, procedures, and some applications). USDA, Agricultural Handbook No. 379Google Scholar
  39. Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15:965–985. doi:10.1111/j.1365-3040.1992.tb01650.x CrossRefGoogle Scholar
  40. Harris D, Horwath WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65:1853–1856Google Scholar
  41. Hart SC, Nason GE, Myrold DD, Perry DA (1994) Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75:880–891. doi:10.2307/1939413 CrossRefGoogle Scholar
  42. Haubensak KA, Hart SC, Stark JM (2002) Influences of chloroform exposure time and soil water content on C and N release in forest soils. Soil Biol Biochem 34:1549–1562. doi:10.1016/S0038-0717(02)00124-4 CrossRefGoogle Scholar
  43. Henry HAL, Brizgys K, Field CB (2008) Litter decomposition in a California annual grassland: interactions between photodegradation and litter layer thickness. Ecosystems 11:545–554. doi:10.1007/s10021-008-9141-4 CrossRefGoogle Scholar
  44. Hogberg P (1997) Tansley review no. 95: 15N natural abundance in soil–plant systems. New Phytol 137:179–203. doi:10.1046/j.1469-8137.1997.00808.x CrossRefGoogle Scholar
  45. Huenneke LF, Anderson JP, Remmenga M, Schlesinger WH (2002) Desertification alters pathways of aboveground net primary production in Chihuahuan ecosystems. Glob Change Biol 8:247–264. doi:10.1046/j.1365-2486.2002.00473.x CrossRefGoogle Scholar
  46. Hulbert LC (1955) Ecological studies of Bromus tectorum and other annual bromegrasses. Ecol Monogr 25:181–213. doi:10.2307/1943550 CrossRefGoogle Scholar
  47. Hull AC, Klomp GJ (1974) Yield of crested wheatgrass under four densities of big sagebrush in southern Idaho. USDA Technical Bulletin No. 1483Google Scholar
  48. Ivans S (2005) Response of water vapor and CO2 fluxes in semi-arid plant communities to variations in precipitation. Dissertation, Utah State University, LoganGoogle Scholar
  49. Jackson LE, Strauss RB, Firestone MK, Bartolome JW (1988) Plant and soil-nitrogen dynamics in California annual grassland. Plant Soil 110:9–17. doi:10.1007/BF02143533 CrossRefGoogle Scholar
  50. Jackson RB, Schenk HJ, Jobbagy EG, Canadell J, Colello GD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Hibbard K, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykes MT (2000) Belowground consequences of vegetation change and their treatment in models. Ecol Appl 10:470–483CrossRefGoogle Scholar
  51. Jackson RB, Berthrong ST, Cook CW, Jobbagy EG, McCulley RL (2004) Comment on “A reservoir of nitrate beneath desert soils”. Science 304:51–52. doi:10.1126/science.1094294 CrossRefGoogle Scholar
  52. James DW, Jurinak JJ (1978) Nitrogen fertilization of dominant plants in the northeastern Great Basin deserts. In: West NE, Skujinš J (eds) Nitrogen in desert ecosystems. US IBP Series No. 9. Stroudsburg, PA, pp 217–231Google Scholar
  53. Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436CrossRefGoogle Scholar
  54. Jones MB, Woodmansee RG (1979) Biogeochemical cycling in annual grassland ecosystems. Bot Rev 45:111–144. doi:10.1007/BF02860854 CrossRefGoogle Scholar
  55. Kolb KJ, Evans RD (2003) Influence of nitrogen source and concentration on nitrogen isotopic discrimination in two barley genotypes (Hordeum vulgare L.). Plant Cell Environ 26:1431–1440. doi:10.1046/j.1365-3040.2003.01066.x CrossRefGoogle Scholar
  56. Low AP, Stark JM, Dudley LM (1997) Effects of soil osmotic potential on nitrification, ammonification, N-assimilation, and nitrous oxide production. Soil Sci 162:16–27. doi:10.1097/00010694-199701000-00004 CrossRefGoogle Scholar
  57. Mack RN (1977) Mineral return via the litter of Artemisia tridentata. Am Midl Nat 97:189–197. doi:10.2307/2424694 CrossRefGoogle Scholar
  58. Mack RN (1981) Invasion of Bromus tectorum L. into western North America: an ecological chronicle. Agroecosystem 7:145–165. doi:10.1016/0304-3746(81)90027-5 Google Scholar
  59. Mariotti A, Mariotti F, Champigny ML, Amarger N, Moyse A (1982) Nitrogen isotope fractionation associated with nitrate reductase-activity and uptake of NO3 by pearl millet. Plant Physiol 69:880–884CrossRefGoogle Scholar
  60. Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W et al (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65Google Scholar
  61. Montani T, Busso CA, Fernandez OA, Brevedan RE (1996) Production and nitrogen cycling in an ecosystem of Eragrostis curvula in semiarid Argentina.1. Plant biomass and productivity. Acta Oecol 17:151–162Google Scholar
  62. Pearson JC (1965) Primary production in grazed and ungrazed desert communities of eastern Idaho. Ecology 46:278–285. doi:10.2307/1936331 CrossRefGoogle Scholar
  63. Peterjohn WT, Schlesinger WH (1990) Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10:67–79. doi:10.1007/BF00000893 CrossRefGoogle Scholar
  64. Pickford GD (1932) The influence of continued heavy grazing and of promiscuous burning on spring-fall ranges in Utah. Ecology 13:159–171. doi:10.2307/1931066 CrossRefGoogle Scholar
  65. Prater MR, Obrist D, Arnone JAIII, DeLucia EH (2006) Net carbon exchange and evapotranspiration in postfire and intact sagebrush communities in the Great Basin. Oecologia 146:595–607. doi:10.1007/s00442-005-0231-0 CrossRefGoogle Scholar
  66. Redente EF, Cook CW, Stark JM, Simmons CL (1985) Semiarid ecosystem development as a function of resource processing and allocation. Progress Report for US DOE, Department of Range Science, Colorado State University, Fort Collins, COGoogle Scholar
  67. Reiner AL (2004) Fuel load and understory community changes associated with varying elevation and pinyon-juniper dominance. Thesis, University of Nevada, RenoGoogle Scholar
  68. Rickard WH (1985) Shoot production and mineral nutrient assimilation in cheatgrass communities. New Sci 59:169–179Google Scholar
  69. Rittenhouse LR, Sneva FA (1977) A technique for estimating big sagebrush production. J Range Manage 30:68–70. doi:10.2307/3897341 CrossRefGoogle Scholar
  70. Saetre P, Stark JM (2005) Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species. Oecologia 142:247–260. doi:10.1007/s00442-004-1718-9 CrossRefGoogle Scholar
  71. Sala OE, Austin AT (2000) Methods in ecosystem science. In: Sala OE, Jackson RB, Mooney HA, Howarth RH (eds) Methods in ecosystem science. Springer, New York, pp 31–43Google Scholar
  72. Schenk HJ, Jackson RB (2002) Root depths, lateral root spreads and belowground/aboveground allometries of plants in water-limited ecosystems. J Ecol 90:480–494. doi:10.1046/j.1365-2745.2002.00682.x CrossRefGoogle Scholar
  73. Schimel JP, Jackson LE, Firestone MK (1989) Spatial and temporal effects of plant–microbial competition for inorganic nitrogen in a California annual grassland. Soil Biol Biochem 21:1059–1066. doi:10.1016/0038-0717(89)90044-8 CrossRefGoogle Scholar
  74. Schlesinger WH, Peterjohn WT (1991) Processes controlling ammonia volatilization from Chihuahuan desert soils. Soil Biol Biochem 23:637–642. doi:10.1016/0038-0717(91)90076-V CrossRefGoogle Scholar
  75. Schlesinger WH, Pilmanis AM (1998) Plant–soil interactions in deserts. Biogeochemistry 42:169–187. doi:10.1023/A:1005939924434 CrossRefGoogle Scholar
  76. Schlesinger WH, Reynolds JR, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA et al (1990) Biological feedbacks in global desertification. Science 247:1043–1048. doi:10.1126/science.247.4946.1043 CrossRefGoogle Scholar
  77. Shinn RS, Anderson RD, Merritt M, Osborne W, MacMahon JA (1975) Curlew Valley validation site report. US/IBP Desert Biome Res Mem 75-1, LoganGoogle Scholar
  78. Skujiņš JJ, West NE (1974) Nitrogen dynamics in stands dominated by some major cool desert shrubs. US/IBP Desert Biome Res Mem 74-42, Logan, 56 ppGoogle Scholar
  79. Smart DR, Stark JM, Diego V (1999) Resource limitations to nitric oxide emissions from a sagebrush-steppe ecosystem. Biogeochemistry 47:63–86Google Scholar
  80. Sparks SR, West NE, Allen EB (1990) Changes in vegetation and land use at two townships in Skull Valley, western Utah. In: McArthur ED, Romney EM, Smith SD, Tueller PT (eds) Symposium on cheatgrass invasion, shrub die-off, and other aspects of shrub biology and management. USDA Forest Service, Intermountain Research Station GTR-INT 276, Las Vegas, pp 26–36Google Scholar
  81. Sperry LJ, Belnap J, Evans RD (2006) Bromus tectorum invasion alters nitrogen dynamics in an undisturbed arid grassland ecosystem. Ecology 87:603–615. doi:10.1890/05-0836 CrossRefGoogle Scholar
  82. Stark JM, Smart DR, Hart SC, Haubensak KA (2002) Regulation of nitric oxide emissions from forest and rangeland soils of western North America. Ecology 83:2278–2292Google Scholar
  83. Stewart G, Hull AC (1949) Cheatgrass (Bromus tectorum L.)—an ecologic intruder in southern Idaho. Ecology 30:58–74. doi:10.2307/1932277 CrossRefGoogle Scholar
  84. Svejcar T, Sheley R (2001) Nitrogen dynamics in perennial- and annual-dominated arid rangeland. J Arid Environ 47:33–46. doi:10.1006/jare.2000.0703 CrossRefGoogle Scholar
  85. Uresk DW, Gilbery RO, Rickard WH (1977) Sampling big sagebrush for phytomass. J Range Manage 30:311–314. doi:10.2307/3897313 CrossRefGoogle Scholar
  86. Vinton MA, Burke IC (1995) Interactions between individual plant species and soil nutrient status in shortgrass steppe. Ecology 76:1116–1133. doi:10.2307/1940920 CrossRefGoogle Scholar
  87. Voroney RP, Winter JP, Gregorich EG (1991) Microbe/plant/soil interactions. In: Coleman DC, Fry B (eds) Carbon isotope techniques. Academic Press, San Diego, pp 77–101Google Scholar
  88. Walvoord MA, Phillips FM, Stonestrom DA, Evans RD, Hartsough PC, Newman BD et al (2003) A reservoir of nitrate beneath desert soils. Science 302:1021–1024. doi:10.1126/science.1086435 CrossRefGoogle Scholar
  89. Welch BL (2005) Big sagebrush: a sea fragmented into lakes, ponds, and puddles. General Technical Report RMRS-GTR-144, USDA Forest Service, Washington, DCGoogle Scholar
  90. West NE (1985) Aboveground litter production of three temperate semidesert shrubs. Am Midl Nat 113: 158–169CrossRefGoogle Scholar
  91. West NE (1999) Synecology and disturbance regimes of sagebrush steppe ecosystems. In: Entwhistle PG, DeBolt AM, Kaltenecker JH, Steenhof K (eds) Proceedings: sagebrush steppe ecosystems symposium. Bureau of Land Management Publication Number BLM/ID/PT-001001+1150, Boise, Idaho, pp 15–16Google Scholar
  92. West NE, Klemmedson JO (1978) Structural distribution of nitrogen in desert ecosystems. In: West NE, Skujinš J (eds) Nitrogen in desert ecosystems. Dowden, Hutchinson and Ross, Stroudsburg, PAGoogle Scholar
  93. West NE, Skujinš J (1977) The nitrogen cycle in North American cold-winter semi-desert ecosystems. Oecol Plantar 12:45–53Google Scholar
  94. West NE, Young JA (2000) Intermountain valleys and lower mountain slopes. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation, 2nd ed. Cambridge University Press, New York, pp 255–284Google Scholar
  95. Whisenant SG (1990) Changing fire frequencies on Idaho’s Snake River Plains: ecological and management implications. In: McArthur ED, Romney EM, Smith SD, Tueller PT (eds) Symposium on cheatgrass invasion, shrub die-off, and other aspects of shrub biology and management. Intermountain Research Station, USDA Forest Service, Las Vegas, pp 4–10Google Scholar
  96. Woodmansee RG, Duncan DA (1980) Nitrogen and phosphorus dynamics and budgets in annual grasslands. Ecology 61:893–904. doi:10.2307/1936759 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Toby D. Hooker
    • 1
    • 2
  • John M. Stark
    • 1
    • 2
  • Urszula Norton
    • 1
    • 3
  • A. Joshua Leffler
    • 2
    • 4
  • Michael Peek
    • 2
    • 5
  • Ron Ryel
    • 2
    • 4
  1. 1.Department of BiologyUtah State UniversityLoganUSA
  2. 2.Ecology CenterUtah State UniversityLoganUSA
  3. 3.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA
  4. 4.Department of Wildland ResourcesUtah State UniversityLoganUSA
  5. 5.Department of BiologyWilliam Paterson UniversityWayneUSA

Personalised recommendations