, 90:275 | Cite as

Characteristics of soil CO2 efflux variability in an aseasonal tropical rainforest in Borneo Island

  • Mizue Ohashi
  • Tomo’omi Kumagai
  • Tomonori Kume
  • Koichiro Gyokusen
  • Taku M. Saitoh
  • Masakazu Suzuki


Although soil carbon dioxide (CO2) efflux from tropical forests may play an important role in global carbon (C) balance, our knowledge of the fluctuations and factors controlling soil CO2 efflux in the Asian tropics is still poor. This study characterizes the temporal and spatial variability in soil CO2 efflux in relation to temperature/moisture content and estimates annual efflux from the forest floor in an aseasonal intact tropical rainforest in Sarawak, Malaysia. Soil CO2 efflux varied widely in space; the range of variation averaged 17.4 μmol m−2 s−1 in total. While most CO2 flux rates were under 10 μmol m−2 s−1, exceptionally high fluxes were observed sporadically at several sampling points. Semivariogram analysis revealed little spatial dependence in soil CO2 efflux. Temperature explained nearly half of the spatial heterogeneity, but the effect varied with time. Seasonal variation in CO2 efflux had no fixed pattern, but was significantly correlated with soil moisture content. The correlation coefficient with soil moisture content (SMC) at 30 and 60 cm depth was higher than at 10 cm depths. The annual soil CO2 efflux, estimated from the relationship between CO2 efflux and SMC at 30 cm depth, was 165 mol m−2 year−1 (1,986 g C m−2 year−1). As this area is known to suffer severe drought every 4–5 years caused by the El Nino-Southern Oscillation, the results suggest that an unpredictable dry period might affect soil CO2 efflux, leading an annual variation in soil C balance.


Carbon balance Moisture Soil respiration Spatial variation Temperature Temporal variation 



We are grateful to the project leader, T. Nakashizuka, and the Forest Department, Sarawak, for their kind support during the study. We also appreciate the assistance of T. Kagawa and H. Kanamori in data collection. T. Ichie provided valuable methodological support. This work was funded by CREST (Core Research for Evolutional Science and Technology) of JST (Japan Science and Technology Agency) and a grant from the Japanese Society for the Promotion of Science.


  1. Ashton PS (2005) Lambir’s forest: the world’s most diverse known tree assemblage? In: Roubik DW, Sakai S, Hamid Karim AA (eds) Pollination ecology and the rain forest-Sarawak studies. Springer Science + Business Media, New York, pp 191–216CrossRefGoogle Scholar
  2. Bain WG, Hutyra L, Patterson DC, Bright AV, Daube BC, Munger JW, Wofsy AC (2005) Wind-induced error in the measurement of soil espiration using closed dynamic chambers. Agric For Meteorol 131:225–232. doi: 10.1016/j.agrformet.2005.06.004 CrossRefGoogle Scholar
  3. Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, Dos Santos J, Araujo AC, Kraut B, Nobre AD, Trumbore SE (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:S72–S88. doi: 10.1890/01-6012 CrossRefGoogle Scholar
  4. Davidson EA, Belk E, Boone R (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Chang Biol 4:217–227. doi: 10.1046/j.1365-2486.1998.00128.x CrossRefGoogle Scholar
  5. Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Carvalho JEM (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69. doi: 10.1023/A:1006204113917 CrossRefGoogle Scholar
  6. Davidson EA, Savage K, Verchot L, Navarro R (2002) Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113:21–37. doi: 10.1016/S0168-1923(02)00100-4 CrossRefGoogle Scholar
  7. Fang C, Moncrieff JB (1998) An open-top chamber for measuring soil respiration and the influence of pressure difference on CO2 efflux measurement. Funct Ecol 12:319–326. doi: 10.1046/j.1365-2435.1998.00189.x CrossRefGoogle Scholar
  8. Fang C, Moncrieff JB, Gholz HL, Clark K (1998) Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant Soil 205:135–146. doi: 10.1023/A:1004304309827 CrossRefGoogle Scholar
  9. Fernandes SAP, Bernoux M, Cerri CC, Feigl BJ, Piccolo MC (2002) Seasonal variation of soil chemical properties and CO2 and CH4 fluxes in unfertilized and P-fertilized pastures in an Ultisol of the Brazilian Amazon. Geoderma 107:227–241. doi: 10.1016/S0016-7061(01)00150-1 CrossRefGoogle Scholar
  10. Gamma Design (2004) Geostatistics for the environmental science version 7. Gamma Design, USA, p 159Google Scholar
  11. Grace J, Lloyd J, Mclntyre J, Miranda AC, Meir P, Miranda HS, Nobre C, Moncrieff J, Massheder J, Malhi Y, Wright I, Gash J (1995) Carbon dioxide uptake by an undisturbed tropical rain forest in Southwest Amazonia, 1992 to 1993. Science 270:778–780. doi: 10.1126/science.270.5237.778 CrossRefGoogle Scholar
  12. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil CO2 efflux: a review of methods and observations. Biogeochemistry 48:115–146. doi: 10.1023/A:1006244819642 CrossRefGoogle Scholar
  13. Harrison RD (2005) A severe drought in Lambir Hills National Park. In: Roubik DW, Sakai S, Hamid Karim AA (eds) Pollination ecology and the rain forest. Springer Science + Business Media, New York, pp 51–64CrossRefGoogle Scholar
  14. Hashimoto S, Tanaka N, Suzuki M, Inoue A, Takizawa H, Kosaka I, Tanaka K, Tantasirin C, Tangtham N (2004) Soil respiration and soil CO2 concentration in a tropical forest, Thailand. J For Res 9:75–79. doi: 10.1007/s10310-003-0046-y CrossRefGoogle Scholar
  15. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenlus M, Read DJ (2001) Large-scale forest girding shows that current photosynthesis drives soil respiration. Nature 411:789–792. doi: 10.1038/35081058 CrossRefGoogle Scholar
  16. Ishizuka S, Tanaka S, Sakurai K, Hirai H, Hirotani H, Ogino K, Lee HS, Kendawang JJ (1998) Characterization and distribution of soils at Lambir Hills National Park in Sarawak, Malysia, with special reference to soil hardness and soil texture. Tropics 8:31–44CrossRefGoogle Scholar
  17. Ishizuka S, Tsuruta H, Murdiyarso D (2002) An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia. Glob Biogeochem Cycles 16:1049. doi: 10.1029/2001GB001614 CrossRefGoogle Scholar
  18. Ishizuka S, Iswandi A, Nakajima Y, Yonemura S, Sudo S, Tsuruta H, Muriyarso D (2005) Spatial pattern of greenhouse gas emission in a tropical rainforest in Indonesia. Nutr Cycl Agroecosyst 71:55–62. doi: 10.1007/s10705-004-5284-7 CrossRefGoogle Scholar
  19. Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Ü, Morgenstern K, Oltchev S, Clement R, Guðmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil adn ecosystem respiration across European forests. Glob Chang Biol 7:269–278. doi: 10.1046/j.1365-2486.2001.00412.x CrossRefGoogle Scholar
  20. Keller M, Kaplan W, Wofsy SC (1986) Emission of N2O, CH4 and CO2 from tropical forest soils. J Geophys Res 91:11791–11802. doi: 10.1029/JD091iD11p11791 CrossRefGoogle Scholar
  21. Kiese R, Butterbach K (2002) N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biol Biochem 34:975–987. doi: 10.1016/S0038-0717(02)00031-7 CrossRefGoogle Scholar
  22. Korb J, Linsenmair KE (2000) Thermoregulation of termite mounds: what role does ambient temperature and metabolism of the colony play? Insectes Soc 47:357–363. doi: 10.1007/PL00001731 CrossRefGoogle Scholar
  23. Kosugi Y, Mitani T, Itoh M, Noguchi S, Tani M, Matsuo N, Takanashi S, Ohkubo S, Nik AR (2007) Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agric For Meteorol 147:35–47. doi: 10.1016/j.agrformet.2007.06.005 CrossRefGoogle Scholar
  24. Kumagai T, Katul GG, Porporato A, Saitoh TM, Ohashi M, Ichie T, Suzuki M (2004a) Carbon and water cycling in a Bornean tropical rainforest under current and future scenarios. Adv Water Resour 27:1135–1150. doi: 10.1016/j.advwatres.2004.10.002 CrossRefGoogle Scholar
  25. Kumagai T, Saitoh TM, Sato Y, Morooka T, Manfroi OJ, Kuraji K, Suzuki M (2004b) Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed diprocarp forest in Sarawak, Borneo: dry spell effects. J Hydrol (Amst) 287:237–251. doi: 10.1016/j.jhydrol.2003.10.002 CrossRefGoogle Scholar
  26. Kumagai T, Saitoh TM, Sato Y, Takahashi H, Manfroi OJ, Morooka T, Kuraji K, Suzuki M, Yasunari T, Komatsu H (2005) Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest. Agric For Meteorol 128:81–92. doi: 10.1016/j.agrformet.2004.08.006 CrossRefGoogle Scholar
  27. Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448. doi: 10.1016/j.soilbio.2005.08.020 CrossRefGoogle Scholar
  28. La Scala N Jr, Marques J Jr, Pereita GT (2000) Short-term temporal changes in the spatial variability model of CO2 emission from a Brazilian bare soil. Soil Biol Biochem 32:1459–1462. doi: 10.1016/S0038-0717(00)00051-1 CrossRefGoogle Scholar
  29. Law BE, Ryan MG, Anthoni PM (1999) Seasonal and annual respiration of ponderosa pine ecosystem. Glob Chang Biol 5:169–182. doi: 10.1046/j.1365-2486.1999.00214.x CrossRefGoogle Scholar
  30. Le Dantec V, Epron D, Dufrêne E (1999) Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. Plant Soil 214:125–132. doi: 10.1023/A:1004737909168 CrossRefGoogle Scholar
  31. Lee M, Nakane K, Nakatsubo T, Mo W, Koizumi H (2002) Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest. Ecol Res 17:401–409. doi: 10.1046/j.1440-1703.2002.00498.x CrossRefGoogle Scholar
  32. Li-Cor (1997) 6400–09 soil flux chamber instruction manual. Li-Cor, Nebraska, p 50Google Scholar
  33. Lou Y, Li Z, Zhang T, Liang Y (2004) CO2 emission from subtropical arable soils of China. Soil Biol Biochem 36:1835–1842. doi: 10.1016/j.soilbio.2004.05.006 CrossRefGoogle Scholar
  34. Malhi Y, Nobre AD, Grace J, Kruijt B, Pereira MGP, Culf A, Scott S (1998) Carbon dioxide transfer over a Central Amazonian rain forest. J Geophys Res 103:31593–31612. doi: 10.1029/98JD02647 CrossRefGoogle Scholar
  35. Medina E, Klinge H, Jordan C, Herrera R (1980) Soil respiration in Amazonian rain forests in the Rio Negro Basin. Flora 170:240–250Google Scholar
  36. Miller SD, Goulden ML, Menton MC, Rocha HR, Freitas HC, Figueira AMS, Sousa CAD (2004) Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol Appl 14:S114–S126. doi: 10.1890/02-6005 CrossRefGoogle Scholar
  37. Montagnini F, Jordan CF (2005) Tropical forest ecology. Springer, Berlin, p 295Google Scholar
  38. Nakashizuka T, Lee HS, Chong L (2001) Studies on canopy processes of a tropical rain forest in Lambir Hills National Park. In: Itioka T, Nakashizuka T, Chong L (eds) Proceedings of the international symposium, canopy process and ecological roles of tropical rain forest, Sarawak, Malaysia, pp 2–7Google Scholar
  39. Ohashi M, Gyokusen K, Saito A (1999) Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica D.Don) forest floor using an open-flow chamber method. For Ecol Manag 123:105–114CrossRefGoogle Scholar
  40. Ohashi M, Finér L, Domisch T, Risch AC, Jurgensen MF, Nirmelä (2007a) Seasonal and diurnal CO2 efflux from red wood ant (Formica aquilonia) mounds in boreal coniferous forests. Soil Biol Biochem 39:1504–1511. doi: 10.1016/j.soilbio.2006.12.034 CrossRefGoogle Scholar
  41. Ohashi M, Kume T, Yamane Sk, Suzuki M (2007b) Hot spots of soil respiration in an Asian tropical rainforest. Geophys Res Lett 34:L08705. doi: 10.1029/2007GL029587 CrossRefGoogle Scholar
  42. Pattey E, Strachan IB, Desjardins RL, Massheder J (2002) Measuring nighttime CO2 flux over terrestrial ecosystems using eddy covariance and nocturnal boundary layer methods. Agric For Meteorol 113:145–158. doi: 10.1016/S0168-1923(02)00106-5 CrossRefGoogle Scholar
  43. Pętal J (1978) The role of ants in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, London, pp 293–325Google Scholar
  44. Priess JA, Fölster H (2001) Microbial properties and soil respiration in submontane forests of Venezuelian Guyana: characteristics and response to fertilizer treatments. Soil Biol Biochem 33:503–509. doi: 10.1016/S0038-0717(00)00191-7 CrossRefGoogle Scholar
  45. Pumpanen J, Ilvesniemi H, Perämäki M, Hari P (2003) Seasonal patterns of soil CO2 efflux and soil air CO2 concentration in a Scots pine forest: comparison of two chamber techniques. Glob Chang Biol 9:371–382. doi: 10.1046/j.1365-2486.2003.00588.x CrossRefGoogle Scholar
  46. Raich JW, Potter C (1995) Global patterns of carbon dioxide emissions from soils. Glob Biogeochem Cycles 9:23–36. doi: 10.1029/94GB02723 CrossRefGoogle Scholar
  47. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99Google Scholar
  48. Rayment MB, Jarvis PG (2000) Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biol Biochem 32:35–45. doi: 10.1016/S0038-0717(99)00110-8 CrossRefGoogle Scholar
  49. Risch AC, Jurgensen MF, Schütz M, Page-Dumroese DS (2005) The contribution of red wood ants to soil C and N pools and CO2 emissions in subalpine forests. Ecology 86:419–430. doi: 10.1890/04-0159 CrossRefGoogle Scholar
  50. Rochette P, Ellert B, Gregorich EG, Desjardins RL, Pattey E, Lassard R, Johnson BG (1997) Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can J Soil Sci 77:195–203Google Scholar
  51. Roubik DW (2005) Large processes with small targets: rarity and pollination in rain forests. In: Roubik DW, Sakai S, Hamid Karim AA (eds) Pollination ecology and the rain forest-Sarawak studies. Springer Science + Business Media, New York, pp 1–11CrossRefGoogle Scholar
  52. Sakurai K (1999) Soils and agriculture in Borneo (in Japanese with English abstract). Tropics 9:27–40 Google Scholar
  53. Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, Da Rocha HR, De Camargo PB, Crill P, Daube BC, De Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in Amazonian Forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557. doi: 10.1126/science.1091165 CrossRefGoogle Scholar
  54. Schwendenmann L, Veldkamp E, Brenes T, O’Brien JJ, Mackensen J (2003) Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry 64:111–128. doi: 10.1023/A:1024941614919 CrossRefGoogle Scholar
  55. Sitaula BK, Bakken LR, Abrahamsen G (1995) N-fertilization and soil acidification effects on N2O and CO2 emission from temperate pine forest soil. Soil Biol Biochem 27:1401–1408. doi: 10.1016/0038-0717(95)00078-S CrossRefGoogle Scholar
  56. Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J (2004) Soil CO2 efflux in a tropical forest in the central Amazon. Glob Chang Biol 10:601–617. doi: 10.1111/j.1529-8817.2003.00761.x CrossRefGoogle Scholar
  57. Sotta ED, Veldkamp E, Guimarães BR, Paixão RK, Ruivo MLP, Almeida SS (2006) Landscape and climatic controls on spatial and temporal variation in soil CO2 efflux in an Eastern Amazonian Rainforest, Caxiuanã, Brazil. For Ecol Manag 237:57–64CrossRefGoogle Scholar
  58. Stoyan H, De-Polli H, Böhm S, Robertson GP, Paul EA (2000) Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant Soil 222:203–214. doi: 10.1023/A:1004757405147 CrossRefGoogle Scholar
  59. Wang KY, Kellomäki S, Zha TS, Peltola H (2004) Component carbon fluxes and their contribution to ecosystem carbon exchange in a pine forest: an assessment based on eddy covariance measurements and an integrated model. Tree Physiol 29:19–34Google Scholar
  60. Xu M, Qi Y (2001) Soil surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Glob Chang Biol 7:667–677. doi: 10.1046/j.1354-1013.2001.00435.x CrossRefGoogle Scholar
  61. Xu M, DeBiase TA, Qi Y, Goldstein A, Liu Z (2001) Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California. Tree Physiol 21:309–318Google Scholar
  62. Yim MH, Joo SJ, Shutou K, Nakane K (2003) Spatial variability of soil respiration in a larch plantation: estimation of the number of sampling locations required. For Ecol Manag 175:585–588CrossRefGoogle Scholar
  63. Yuste JC, Nagy M, Janssens IA, Carrara A, Ceulemans R (2005) Soil respiration in a mixed temperate forest and its contribution to total ecosystem respiration. Tree Physiol 25:609–619Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mizue Ohashi
    • 1
  • Tomo’omi Kumagai
    • 2
  • Tomonori Kume
    • 2
  • Koichiro Gyokusen
    • 3
  • Taku M. Saitoh
    • 4
  • Masakazu Suzuki
    • 5
  1. 1.School of Human Science and EnvironmentUniversity of HyogoHimeji CityJapan
  2. 2.Kasuya Research ForestKyushu UniversityFukuokaJapan
  3. 3.Faculty of AgricultureKyushu UniversityFukuokaJapan
  4. 4.River Basin Research CentreGifu UniversityGifuJapan
  5. 5.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations