Advertisement

Biogeochemistry

, Volume 90, Issue 3, pp 243–258 | Cite as

Functional role of DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest

  • T. Rütting
  • D. Huygens
  • C. Müller
  • O. Van Cleemput
  • R. Godoy
  • P. Boeckx
Article

Abstract

Nitrite (NO2 ) is an intermediate in a variety of soil N cycling processes. However, NO2 dynamics are often not included in studies that explore the N cycle in soil. Within the presented study, nitrite dynamics were investigated in a Nothofagus betuloides forest on an Andisol in southern Chile. We carried out a 15N tracing study with six 15N labeling treatments, including combinations of NO3 , NH4 + and NO2 . Gross N transformation rates were quantified with a 15N tracing model in combination with a Markov chain Monte Carlo optimization routine. Our results indicate the occurrence of functional links between (1) NH4 + oxidation, the main process for NO2 production (nitritation), and NO2 reduction, and (2) oxidation of soil organic N, the dominant NO3 production process in this soil, and dissimilatory NO3 reduction to NH4 + (DNRA). The production of NH4 + via DNRA was approximately ten times higher than direct mineralization from recalcitrant soil organic matter. Moreover, the rate of DNRA was several magnitudes higher than the rate of other NO3 reducing processes, indicating that DNRA is able to outcompete denitrification, which is most likely not an important process in this ecosystem. These functional links are most likely adaptations of the microbial community to the prevailing pedo-climatic conditions of this Nothofagus ecosystem.

Keywords

Nothofagus betuloides 15N tracing model Nitrite (NO2N retention Dissimilatory nitrate reduction to ammonium (DNRA) Markov chain Monte Carlo sampling 

Abbreviations

Anammox

Anaerobic ammonium oxidation

DNRA

Dissimilatory nitrate reduction to ammonium

GWC

Gravimetric water content

MCMC

Markov chain Monte Carlo

MOM

Macro organic matter

PDF

Parameter density function

SOM

Soil organic matter

WFPS

Water filled pore space

References

  1. Azhar ES, Verhe R, Proot M, Sandra P, Verstraete E (1986) Binding of nitrite-N on polyphenols during nitrification. Plant Soil 94:369–382. doi: 10.1007/BF02374331 CrossRefGoogle Scholar
  2. Bengtsson G, Bergwall C (2000) Fate of 15N labelled nitrate and ammonium in a fertilized forest soil. Soil Biol Biochem 32:545–557. doi: 10.1016/S0038-0717(99)00183-2 CrossRefGoogle Scholar
  3. Berntson GM, Aber JD (2000) Fast nitrate immobilization in N saturated temperate forest soils. Soil Biol Biochem 32:151–156. doi: 10.1016/S0038-0717(99)00132-7 CrossRefGoogle Scholar
  4. Betlach MR, Tiedje JM (1981) Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ Microbiol 42:1074–1084Google Scholar
  5. Booth MS, Stark JM, Rastetter EB (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157. doi: 10.1890/04-0988 CrossRefGoogle Scholar
  6. Burger M, Jackson LE (2004) Plant and microbial use and turnover: rapid conversion of nitrate to ammonium in soil with roots. Plant Soil 266:289–301. doi: 10.1007/s11104-005-1362-0 CrossRefGoogle Scholar
  7. Burns LC, Stevens RJ, Laughlin RJ (1995) Determination of the simultaneous production and consumption of soil nitrite using 15N. Soil Biol Biochem 27:839–844. doi: 10.1016/0038-0717(94)00219-Q CrossRefGoogle Scholar
  8. Burns LC, Stevens RJ, Laughlin RJ (1996) Production of nitrite in soil by simultaneous nitrification and denitrification. Soil Biol Biochem 28:609–616. doi: 10.1016/0038-0717(95)00175-1 CrossRefGoogle Scholar
  9. Burton J, Chen C, Xu Z, Ghadiri H (2007) Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia. Soil Biol Biochem 39:426–433. doi: 10.1016/j.soilbio.2006.08.011 CrossRefGoogle Scholar
  10. Chalk PM, Smith CJ (1983) Chemodenitrification. In: Freney JR, Simpson JR (eds) Gaseous loss of nitrogen from plant soil systems. Martinus Nijhoff and Dr. W. Junk, Dordrecht, pp 65–89Google Scholar
  11. Cho CM, Mills JG (1979) Kinetic formulation of the denitrification process in soil. Can J Soil Sci 59:249–257Google Scholar
  12. Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:667–680CrossRefGoogle Scholar
  13. Davidson EA, Chorover J, Dail DB (2003) A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Glob Chang Biol 9:228–236. doi: 10.1046/j.1365-2486.2003.00592.x CrossRefGoogle Scholar
  14. Davidson EA, Dail DB, Chorover J (2008) Iron interference in the quantification of nitrate in soil extracts and its effect on hypothesized abiotic immobilization of nitrate. Biogeochemistry 90:65–73. doi: 10.1007/s10533-10008-19231-10536 CrossRefGoogle Scholar
  15. Doff Sotta E, Corre MD, Veldkamp E (2008) Differing N status and N retention processes of soils under old-growth lowland forest in Eastern Amazonia, Caxiuanã, Brazil. Soil Biol Biochem 40:740–750. doi: 10.1016/j.soilbio.2007.10.009 CrossRefGoogle Scholar
  16. Doxtader KG, Alexander M (1966) Nitrification by heterotrophic soil microorganisms. Soil Sci Soc Am Proc 30:351–355Google Scholar
  17. Elliott ET, Paustian K, Frey SD (1996) Modeling the measurable or measuring the modelable: a hierarchical approach to isolating meaningful soil organic matter fractionations. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models using existing long-term datasets. Springer, Berlin, pp 161–179Google Scholar
  18. Eylar OR, Schmidt EL (1959) A survey of heterotrophic micro-organisms from soil for ability to from nitrite and nitrate. J Gen Microbiol 20:473–481Google Scholar
  19. Fahrmeir l Künstler R, Pigeot I, Tutz G (2004) Statistik—Der Weg zur Datenanalyse. Springer, BerlinGoogle Scholar
  20. Fitzhugh RD, Christenson LM, Lovett GM (2003a) The fate of 15NO2 tracer in soils under different tree species of the Catskill mountains, New York. Soil Sci Soc Am J 67:1257–1265Google Scholar
  21. Fitzhugh RD, Lovett GM, Venterea RT (2003b) Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA. Glob Chang Biol 9:1591–1601. doi: 10.1046/j.1365-2486.2003.00694.x CrossRefGoogle Scholar
  22. Godoy R, Oyarzún CE, Gerding V (2001) Precipitation chemistry in deciduous and evergreen Nothofagus forests of southern Chile under a low-deposition climate. Basic Appl Ecol 2:65–72. doi: 10.1078/1439-1791-00037 CrossRefGoogle Scholar
  23. Grenon F, Bradley RL, Titus BD (2004) Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification: possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biol Biochem 36:1465–1474. doi: 10.1016/j.soilbio.2004.04.021 CrossRefGoogle Scholar
  24. Hackl E, Bachmann G, Zechmeister-Boltenstern S (2004) Microbial nitrogen turnover in soils under different types of natural forest. For Ecol Manage 188:101–112. doi: 10.1016/j.foreco.2003.07.014 CrossRefGoogle Scholar
  25. Hart SC, Binkley D, Perry DA (1997) Influence of red alder on soil nitrogen transformations in two conifer forests of contrasting productivity. Soil Biol Biochem 29:1111–1123. doi: 10.1016/S0038-0717(97)00004-7 CrossRefGoogle Scholar
  26. Hassink J (1995) Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization. Soil Biol Biochem 27:1099–1108. doi: 10.1016/0038-0717(95)00027-C CrossRefGoogle Scholar
  27. Hauck RD (1982) Nitrogen isotope ratio analysis. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp 735–779Google Scholar
  28. Holland EA, Dentener FJ, Braswell BH, Sulzman JM (1999) Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46:7–43Google Scholar
  29. Huygens D, Boeckx P, Van Cleemput O, Oyarzún CE, Godoy R (2005) Aggregate and soil organic carbon dynamics in South Chilean Andisols. Biogeosciences 2:159–174Google Scholar
  30. Huygens D, Rütting T, Boeckx P, Van Cleemput O, Godoy R, Müller C (2007) Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus ecosystem. Soil Biol Biochem 39:2448–2458. doi: 10.1016/j.soilbio.2007.04.013 CrossRefGoogle Scholar
  31. Huygens D, Boeckx P, Templer PH, Paulino L, Van Cleemput O, Oyarzún CE, Müller C, Godoy R (2008) Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soil. Nat Geosci 1:543–548. doi: 10.1038/ngeo252 CrossRefGoogle Scholar
  32. Islam A, Chen D, White RE, Weatherley AJ (2008) Chemical decomposition and fixation of nitrite in acidic pasture soils and implications for measurement of nitrification. Soil Biol Biochem 40:262–265. doi: 10.1016/j.soilbio.2007.07.008 CrossRefGoogle Scholar
  33. IUSS Working Group WRB (2006) World reference base for soil resources. World soil resources report no. 103. FAO, RomeGoogle Scholar
  34. Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am Proc 18:33–34CrossRefGoogle Scholar
  35. Knowles R (1982) Denitrification. Microbiol Rev 46:43–70Google Scholar
  36. Landi L, Badalucco L, Pomarè F, Nannipieri P (1993) Effectiveness of antibiotics to distinguish the contributions of fungi and bacteria net nitrogen mineralization, nitrification and respiration. Soil Biol Biochem 25:1771–1778. doi: 10.1016/0038-0717(93)90182-B CrossRefGoogle Scholar
  37. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. doi: 10.1038/nature04983 CrossRefGoogle Scholar
  38. Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272Google Scholar
  39. Luxhøi J, Nielsen NE, Jensen LS (2003) Influence of 15NH4 +-application on gross N turnover rates in soil. Soil Biol Biochem 35:603–606. doi: 10.1016/S0038-0717(03)00002-6 CrossRefGoogle Scholar
  40. Mary B, Recous S, Robin D (1998) A model for calculating nitrogen fluxes in soil using 15N tracing. Soil Biol Biochem 30:1963–1979. doi: 10.1016/S0038-0717(98)00068-6 CrossRefGoogle Scholar
  41. Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32Google Scholar
  42. Meijboom FW, Hassink J, von Noordwijk M (1995) Density fractionation of soil macroorganic matter using silica suspensions. Soil Biol Biochem 27:1109–1111. doi: 10.1016/0038-0717(95)00028-D CrossRefGoogle Scholar
  43. Mulder A, Van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184. doi: 10.1111/j.1574-6941.1995.tb00281.x CrossRefGoogle Scholar
  44. Müller C, Stevens RJ, Laughlin RJ (2004) A 15N tracing model to analyse N transformations in old grassland soil. Soil Biol Biochem 36:619–632. doi: 10.1016/j.soilbio.2003.12.006 CrossRefGoogle Scholar
  45. Müller C, Stevens RJ, Laughlin RJ (2006) Sources of nitrite in a permanent grassland soil. Eur J Soil Sci 57:337–343. doi: 10.1111/j.1365-2389.2005.00769.x (Erratum. Eur J Soil Sci 357:279)CrossRefGoogle Scholar
  46. Müller C, Rütting T, Kattge J, Laughlin RJ, Stevens RJ (2007) Estimation of parameters in complex 15N tracing models via Monte Carlo sampling. Soil Biol Biochem 39:715–726. doi: 10.1016/j.soilbio.2006.09.021 CrossRefGoogle Scholar
  47. Mulvaney RL (1996) Nitrogen-inorganic forms. In: Sparks DL (ed) Methods of soil analysis. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp 1123–1184Google Scholar
  48. Nanzyo M, Dahlgren RA, Shoji S (1993) Chemical characteristics of volcanic ash soils. In: Shoji S, Nanzyo M, Dahlgren RA (eds) Volcanic ash soils: genesis, properties and utilization. Elsevier, Amsterdam, The Netherlands, pp 147–187Google Scholar
  49. Nelson DW, Bremner JM (1969) Factors affecting chemical transformations of nitrite in soils. Soil Biol Biochem 1:229–239. doi: 10.1016/0038-0717(69)90023-6 CrossRefGoogle Scholar
  50. Nijburg JW, Laanbroek HJ (1997) The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community. FEMS Microbiol Ecol 22:57–63. doi: 10.1111/j.1574-6941.1997.tb00356.x CrossRefGoogle Scholar
  51. Oyarzún CE, Godoy R, de Schrijver A, Staelens J, Lust N (2004) Water chemistry and nutrient budgets in an undisturbed evergreen rainforest of southern Chile. Biogeochemistry 71:107–123. doi: 10.1007/s10533-004-4107-x CrossRefGoogle Scholar
  52. Parfitt RL, Scott NA, Ross DJ, Salt GJ, Tate KR (2002) Land-use change effects on soil C and N transformations in soils of high N status: comparisons under indigenous forest, pasture and pine plantation. Biogeochemistry 66:203–221. doi: 10.1023/B:BIOG.0000005324.37711.63 CrossRefGoogle Scholar
  53. Paul EA (2007) Soil microbiology, ecology, and biochemistry. Academic Press, AmsterdamGoogle Scholar
  54. Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic Press, San DiegoGoogle Scholar
  55. Pedersen H, Dunkin KA, Firestone MK (1999) The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques. Biogeochemistry 44:135–150Google Scholar
  56. Pepper DA, Eliasson PE, McMurtrie RE, Corbeels M, Ågren GI, Strömgren M, Linder S (2007) Simulated mechanisms of soil N feedback on the forest CO2 response. Glob Chang Biol 13:1265–1281. doi: 10.1111/j.1365-2486.2007.01342.x CrossRefGoogle Scholar
  57. Perakis SS, Hedin LO (2001) Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile. Ecology 82:2245–2260Google Scholar
  58. Pérez CA, Hedin LO, Armesto JJ (1998) Nitrogen mineralization in two unpolluted old-growth forests of contrasting biodiversity and dynamics. Ecosystems 1:361–374. doi: 10.1007/s100219900030 CrossRefGoogle Scholar
  59. Pett-Ridge J, Silver WL, Firestone MK (2006) Redox fluctuations frame microbial community impacts on N-cycling rates in humid tropical forest soil. Biogeochemistry 81:95–110. doi: 10.1007/s10533-006-9032-8 CrossRefGoogle Scholar
  60. Piňeiro G, Oesterheld M, Batista WB (2006) Opposite changes of whole-soil vs. pools C:N ratios: a case of Simpson’s paradox with implications on nitrogen cycling. Glob Chang Biol 12:804–809. doi: 10.1111/j.1365-2486.2006.01139.x CrossRefGoogle Scholar
  61. Price SJ, Sherlock RR, Kelliher FM, McSeveny TM, Tate KR, Condron LM (2004) Pristine New Zealand forest soil is a strong methane sink. Glob Chang Biol 10:16–26. doi: 10.1046/j.1529-8817.2003.00710x CrossRefGoogle Scholar
  62. Radcliffe DJ, Gillman GP (1985) Surface charge characteristics of volcanic ash soils from the southern highlands of Papua New Guinea. In: Cadas EF, Yaalon DH (eds) Volcanic soil. Catena, Braunschweig, pp 35–46Google Scholar
  63. Rice EL, Pancholy SK (1972) Inhibition of nitrification by climax ecosystems. Am J Bot 59:1033–1040. doi: 10.2307/2441488 CrossRefGoogle Scholar
  64. Russow R, Sich I, Neue H-U (2000) The formation of the trace gases NO and N2O in soils by the coupled processes of nitrification and denitrification: results of kinetic 15N tracer investigations. Chemosphere Glob Chang Sci 2:359–366. doi: 10.1016/S1465-9972(00)00012-X CrossRefGoogle Scholar
  65. Rütting T, Müller C (2007) 15N tracing models with a Monte Carlo optimization procedure provide new insights on gross N transformations in soil. Soil Biol Biochem 39:2351–2361. doi: 10.1016/j.soilbio.2007.04.006 CrossRefGoogle Scholar
  66. Rütting T, Müller C (2008) Process-specific analysis of nitrite dynamics in a permanent grassland soil by using a Monte Carlo sampling technique. Eur J Soil Sci 59:208–215. doi: 10.1111/j.1365-2389.2007.00976.x CrossRefGoogle Scholar
  67. Saghir NS, Mulvaney RL, Azam F (1993) Determination of nitrogen by microdiffusion in mason jars. 1. Inorganic nitrogen in soil extracts. Commun Soil Sci Plant Anal 24:1745–1762CrossRefGoogle Scholar
  68. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602. doi: 10.1890/03-8002 CrossRefGoogle Scholar
  69. Schimel JP, Firestone MK, Killham KS (1984) Identification of heterotrophic nitrification in a Sierran forest soil. Appl Environ Microbiol 48:802–806Google Scholar
  70. Shaviv A (1988) Control of nitrification rate by increasing ammonium concentration. Fert Res 17:177–188. doi: 10.1007/BF01050278 CrossRefGoogle Scholar
  71. Silver WL, Herman DJ, Firestone MK (2001) Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. Ecology 82:2410–2416CrossRefGoogle Scholar
  72. Silver WL, Thompson AW, Bradbury D, Chapin FS III, Ewel JJ, Firestone MK (2003) Global patterns in dissimilatory nitrate reduction: a latitudinal gradient in nitrogen retention and loss. American Geophysical Union, Fall Meeting abstract B32B-0389Google Scholar
  73. Silver WL, Thompson AW, Reich A, Ewel JJ, Firestone MK (2005) Nitrogen cycling in tropical plantation forests: potential controls on nitrogen retention. Ecol Appl 15:1604–1614. doi: 10.1890/04-1322 CrossRefGoogle Scholar
  74. Skjemstad JO, Spouncer LR, Cowie B, Swift RS (2004) Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Aust J Soil Res 42:79–88. doi: 10.1071/SR03013 CrossRefGoogle Scholar
  75. Smith CJ, Chalk PM (1979) Mineralization of nitrite fixed by soil organic matter. Soil Biol Biochem 11:515–519. doi: 10.1016/0038-0717(79)90011-7 CrossRefGoogle Scholar
  76. Smith RV, Doyle RM, Burns LC, Stevens RJ (1997) A model for nitrite accumulation in soils. Soil Biol Biochem 29:1241–1247. doi: 10.1016/S0038-0717(97)00028-X CrossRefGoogle Scholar
  77. Smith JU, Smith P, Monaghan R, Macdonald AJ (2002) When is a measured soil organic matter fraction equivalent to a model pool? Eur J Soil Sci 53:405–416. doi: 10.1046/j.1365-2389.2002.00458.x CrossRefGoogle Scholar
  78. Speir TW, Townsend JA, More RD, Hill LF (1999) Short-lived isotopic method to measure nitrous oxide emissions from a soil under four low-fertility management systems. Soil Biol Biochem 31:1413–1421. doi: 10.1016/S0038-0717(99)00061-9 CrossRefGoogle Scholar
  79. Sprent JI (1987) The ecology of the nitrogen cycle. Cambridge University Press, CambridgeGoogle Scholar
  80. Stark JM (2000) Nutrient transformations. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York, pp 215–234Google Scholar
  81. Stevens RJ, Laughlin RJ (1994) Determining nitrogen-15 nitrite or nitrate by producing nitrous oxide. Soil Sci Soc Am J 58:1108–1116Google Scholar
  82. Stroo HF, Klein TM, Alexander M (1986) Heterotrophic nitrification in an acid forest soil and by an acid-tolerant fungus. Appl Environ Microbiol 52:1107–1111Google Scholar
  83. Tamm CO (1991) Nitrogen in terrestrial ecosystems (Ecological Studies 81). Springer, BerlinGoogle Scholar
  84. Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA (1982) Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek 48:569–583. doi: 10.1007/BF00399542 CrossRefGoogle Scholar
  85. Van Cleemput O, Baert L (1976) Theoretical considerations on nitrite self-decomposition reactions in soils. Soil Sci Soc Am J 40:322–324Google Scholar
  86. Van Cleemput O, Baert L (1984) Nitrite: a key compound in N loss processes under acid conditions? Plant Soil 76:233–241. doi: 10.1007/BF02205583 CrossRefGoogle Scholar
  87. Van Cleemput O, Samater AH (1996) Nitrite in soils: accumulation and role in the formation of gaseous N compounds. Fert Res 45:81–89. doi: 10.1007/BF00749884 CrossRefGoogle Scholar
  88. Venterea RT (2007) Nitrite-driven nitrous oxide production under aerobic soil conditions: kinetics and biochemical controls. Glob Chang Biol 13:1798–1809. doi: 10.1111/j.1365-2486.2007.01389.x CrossRefGoogle Scholar
  89. Venterea RT, Rolston DE (2000) Mechanisms and kinetics of nitric oxide and nitrous oxide production during nitrification in agricultural soils. Glob Chang Biol 6:303–316. doi: 10.1046/j.1365-2486.2000.00309.x CrossRefGoogle Scholar
  90. Vitousek PM, Gosz JR, Grier CC, Melillo JM, Reiners WA, Todd RL (1979) Nitrate losses from disturbed ecosystems. Science 204:469–474. doi: 10.1126/science.204.4392.469 CrossRefGoogle Scholar
  91. Wrage N, Velthof GL, Van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732. doi: 10.1016/S0038-0717(01)00096-7 CrossRefGoogle Scholar
  92. Zeller B, Recous S, Kunze M, Moukoumi J, Colin-Belgrand M, Bienaimé S, Ranger J, Dambrine E (2007) Imfluence of tree species on gross and net N transformations in forest soil. Ann For Sci 64:151–158. doi: 10.1051/forest:2006099 CrossRefGoogle Scholar
  93. Zimmermann M, Leifeld J, Schmidt MWI, Smith P, Fuhrer J (2006) Measured soil organic matter fractions can be related to pools in the RothC model. Eur J Soil Sci 58:658–667. doi: 10.1111/j.1365-2389.2006.00855.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • T. Rütting
    • 1
    • 2
  • D. Huygens
    • 3
    • 4
  • C. Müller
    • 1
    • 5
  • O. Van Cleemput
    • 3
  • R. Godoy
    • 6
  • P. Boeckx
    • 3
  1. 1.Department of Plant EcologyUniversity of GiessenGiessenGermany
  2. 2.Department of Plant and Environmental SciencesUniversity of GothenburgGothenburgSweden
  3. 3.Laboratory of Applied Physical Chemistry – ISOFYS, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  4. 4.Instituto de Ingeniería Agraria y SuelosUniversidad Austral de ChileValdiviaChile
  5. 5.School of Biology and Environmental ScienceUCD Dublin Dublin 4Ireland
  6. 6.Institute of BotanyUniversidad Austral de ChileValdiviaChile

Personalised recommendations