Biogeochemistry

, Volume 90, Issue 2, pp 209–223

The reserve of weatherable primary silicates impacts the accumulation of biogenic silicon in volcanic ash soils

  • C. Henriet
  • N. De Jaeger
  • M. Dorel
  • S. Opfergelt
  • B. Delvaux
Article

Abstract

Banana plantlets (Musa acuminata cv Grande Naine) cultivated in hydroponics take up silicon proportionally to the concentration of Si in the nutrient solution (0–1.66 mM Si). Here we study the Si status of banana plantlets grown under controlled greenhouse conditions on five soils developed from andesitic volcanic ash, but differing in weathering stage. The mineralogical composition of soils was inferred from X-ray diffraction, elemental analysis and selective chemical/mineralogical extractions. With increasing weathering, the content of weatherable primary minerals decreased. Conversely, clay content increased and stable secondary minerals were increasingly dominant: gibbsite, Fe oxides, allophane, halloysite and kaolinite. The contents of biogenic Si in plant and soil were governed by the reserve of weatherable primary minerals. The largest concentrations of biogenic Si in plant (6.9–7 g kg−1) and soil (50–58 g kg−1) occurred in the least weathered soils, where total Si content was above 225 g kg−1. The lowest contents of biogenic Si in plant (2.8–4.3 g kg−1) and soil (8–31 g kg−1) occurred in the most weathered desilicated soils enriched with secondary oxides and clay minerals. Our data imply that soil weathering stage directly impacted the soil-to-plant transfer of silicon, and thereby the stock of biogenic Si in a soil–plant system involving a Si-accumulating plant. They further imply that soil type can influence the silicon soil–plant cycle and its hydrological output.

Keywords

Silicon Musa Biogenic Si Weatherable primary silicates Volcanic ash soils 

References

  1. Alexandre A, Meunier JD, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682. doi:10.1016/S0016-7037(97)00001-X CrossRefGoogle Scholar
  2. Baert G, Van Ranst E (1997) Total reserve in bases as an alternative for weatherable mineral content in soil classification: a micromorphological investigation. In: Shoba S, Gerasimova M, Miedema R (eds) Soil micromorphology: studies on soil diversity, diagnostics, dynamics. Proceedings of 10th internal working meeting on soil micromorphology, Moscow-WageningenGoogle Scholar
  3. Bartoli F, Burtin G, Herbillon AJ (1991) Disaggregation and clay dispersion of oxisols: Na resin, a recommended methodology. Geoderma 49:301–317. doi:10.1016/0016-7061(91)90082-5 CrossRefGoogle Scholar
  4. Beckwith RS, Reeve R (1963) Studies on soluble silica in soils I. The sorption of silicic acid by soils and minerals. Aust J Soil Res 1:157–168. doi:10.1071/SR9630157 CrossRefGoogle Scholar
  5. Berthelsen S, Noble AD, Garside AL (1999) An assessment of soil and plant silicon levels in North Queensland. In: Proc conf Aust soc sugar cane technologists, vol 21, pp 92–100Google Scholar
  6. Berthelsen S, Noble AD, Garside AL (2001) Silicon research down under: past, present, and future. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, The Netherlands, pp 241–256CrossRefGoogle Scholar
  7. Carlier J, De Waele D, Escalant JV (2002) Evaluation globale de la résistance des bananiers à la fusariose, aux maladies foliaires causées par les Mycosphaerella spp. et aux nématodes. In: Vezina A, Picq C, (eds) Guides techniques INIBAP 6. Réseau international pour l’amélioration de la banane et de la banane plantain, Montpellier, FranceGoogle Scholar
  8. Cary L, Alexandre A, Meunier JD, Boeglin JL, Braun JJ (2005) Contribution of phytoliths to the suspended load of biogenic silica in the Nyong Basin rivers (Cameroon). Biogeochemistry 74:101–114. doi:10.1007/s10533-004-2945-1 CrossRefGoogle Scholar
  9. Certini G, Wilson MJ, Hillier SJ, Fraser AR, Belbos E (2006) Mineral weathering in trachydacitic-derived soils and saprolites involving formation of embryonic halloysite and gibbsite at Mt. Amiata, Central Italy. Geoderma 133:173–190. doi:10.1016/j.geoderma.2005.07.005 CrossRefGoogle Scholar
  10. Chadwick OA, Derry LA, Vitousek PM, Heubert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497. doi:10.1038/17276 CrossRefGoogle Scholar
  11. Chadwick OA, Gavenda RT, Kelly EF, Ziegler K, Olson CG, Elliott WC et al (2003) The impact of climate on the biogeochemical functioning of volcanic soils. Chem Geol 202:195–223. doi:10.1016/j.chemgeo.2002.09.001 CrossRefGoogle Scholar
  12. Chao TT, Sanzolone RF (1992) Decomposition techniques. J Geochem Explor 44:65–106. doi:10.1016/0375-6742(92)90048-D CrossRefGoogle Scholar
  13. Chaperon P, L’Hote Y, Vuillaume G (1985) Les ressources en eau de surface de la Guadeloupe. Editions de l’ORSTOM, Collection Monographies Hydrologiques n°7, FranceGoogle Scholar
  14. Chapman LS, Haysom BC, Chardon CW (1981) Checking the fertility of Queensland’s sugarland. In: Proc conf Aust soc sugar cane technologists, vol 3, pp 325–332Google Scholar
  15. Chorover J, DiChiaro MJ, Chadwick OA (1999) Structural charge and cesium retention in a chronosequence of tephritic soils. Proc Soil Sci Soc Am 63:169–177Google Scholar
  16. Colmet-Daage F (1969) Carte des sols des Antilles au 1/20 000. Atlas des départements français d’Outre-Mer, IGN, ParisGoogle Scholar
  17. Colmet-Daage F, Gautheyrou J (1974) Soil association on volcanic material in tropical America with special reference to Martinique and Guadeloupe. Trop Agric Trinidad 51:121–128Google Scholar
  18. Colmet-Daage F, Lagache P (1965) Caractéristiques de quelques sols dérivés de roches aux Antilles Françaises. Cah ORSTOM Ser Pedol 3:91–121Google Scholar
  19. Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cycles 16:1121–1127. doi:10.1029/2002GB001894 CrossRefGoogle Scholar
  20. Conley DJ, Sommer M, Meunier JD, Kaczorek D, Saccone L (2006) Silicon in the terrestrial biogeosphere. In: Ittekot V, Humborg C, Garnier J (eds) Land-ocean nutrient fluxes: silica cycle. SCOPE, Island Press, Washington, pp 13–28Google Scholar
  21. Dagain J, Paterne M, Westercamp D (1981) La mise en place du massif volcanique Madeleine-Soufrière, Basse-Terre de Guadeloupe, Antilles. C R Acad Sci Paris 292:921–926Google Scholar
  22. Dahlgren RA (1994) Quantification of allophane and imogolite. In: Amonette JE, Zelazny LW (eds) Quantitative methods in soil mineralogy. Soil Science Society of America, Madison, pp 430–451Google Scholar
  23. Delvaux B, Herbillon AJ, Vielvoye L (1989) Characterization of a weathering sequence of soils derived from volcanic ash in Cameroon—taxonomic, mineralogical and agronomic implications. Geoderma 45:375–388. doi:10.1016/0016-7061(89)90017-7 CrossRefGoogle Scholar
  24. Delvaux B, Tessier D, Herbillon AJ, Burtin G, Jaunet AM, Vielvoye L (1992) Morphology, texture and microstructure of halloysitic soil clays as related to weathering and exchangeable cation. Clays Clay Miner 40:446–456. doi:10.1346/CCMN.1992.0400409 CrossRefGoogle Scholar
  25. Derry LA, Kurtz CA, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–730. doi:10.1038/nature03299 CrossRefGoogle Scholar
  26. Dixit S, Van Cappellen P, Johan van Bennekom A (2001) Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Mar Chem 73:333–352. doi:10.1016/S0304-4203(00)00118-3 CrossRefGoogle Scholar
  27. Dorel M (2001) Effet des pratiques culturales sur les propriétés physiques des sols volcaniques de Guadeloupe et influence sur l’enracinement du bananier. PhD Thesis, Université catholique de Louvain, BelgiumGoogle Scholar
  28. Dorel M, Roger-Estrade J, Manichon H, Delvaux B (2000) Porosity and soil water properties of Caribbean volcanic ash soils. Soil Use Manage 16:133–140Google Scholar
  29. Drees LR, Wilding LP, Smeck NE, Senkayi AL (1989) Silica in soils: quartz and disorders polymorphs. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 914–974Google Scholar
  30. Fox RL, Silva JA, Younge OR, Plucknett DL, Sherman GD (1967) Soil and plant silicon and silicate response by sugarcane. Soil Sci Soc Am Proc 31:775–779Google Scholar
  31. Garrels RM (1967) Genesis of some ground waters from igneous rocks. In: Abelson P (ed) Research in geochemistry. Wiley, NewYork, pp 405–420Google Scholar
  32. Haysom MB, Chapman LS (1975) Some aspects of the calcium silicate trials at Mackay. In: Proc conf Qld soc sugar cane technologists, vol 42, pp 117–122Google Scholar
  33. Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B (2006) Effects, distribution, and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil 287:359–374. doi:10.1007/s11104-006-9085-4 CrossRefGoogle Scholar
  34. Henriet C, Bodarwé L, Dorel M, Draye X, Delvaux B (2008) Silicon leaf content in banana (Musa spp.) reveals the weathering stage of volcanic ash soils in Guadeloupe. Plant Soil (in press). doi:10.1007/s11104-008-9680-7
  35. Herbauts J, Dehalu FA, Gruber W (1994) Quantitative-determination of plant opal content in soils, using a combined method of heavy liquid separation and alkali dissolution. Eur J Soil Sci 45:379–385. doi:10.1111/j.1365-2389.1994.tb00522.x CrossRefGoogle Scholar
  36. Herbillon AJ (1986) Chemical estimation of weatherable minerals present in the diagnostic horizons of low activity clay soils. In: Beinroth FH, Camargo MN, Eswaran H (eds) Proceedings of the 8th international soil classification workshop: classification, characterization and utilization of oxisols, Part 1 EMBRAPA, Rio de Janeiro, pp 39–48Google Scholar
  37. Hinsinger P, Barros ONF, Benedetti MF, Noack Y, Callot G (2001) Plant-induced weathering of a basaltic rock: experimental evidence. Geochim Cosmochim Acta 65:137–152. doi:10.1016/S0016-7037(00)00524-X CrossRefGoogle Scholar
  38. Imaizumi K, Yoshida S (1958) Edaphological studies on silicon supplying power of paddy soils. Bull Natl Inst Agric Sci 8:261–304Google Scholar
  39. IUSS Working Group WRB (2006) World reference base for soil resources 2006, 2nd edn. World Soil Resources Reports No. 103. FAO, RomeGoogle Scholar
  40. Jackson ML (1965) Soil chemical analysis-advanced course. Dept. of soil science, MadisonGoogle Scholar
  41. Karathanasis AD (2002) Mineral equilibria in environmental soil systems. In: Dixon JB, Weed SB (eds) Soil mineralogy with environmental applications. Soil Science Society of America, Madison, pp 109–151Google Scholar
  42. Kelly EF (1990) Methods for extracting opal phytoliths from soil and plant material. Workshop on biotic indicators of global change, Seattle, WashingtonGoogle Scholar
  43. Kittrick JA (1969) Soil minerals in the Al2O3–SiO2–H2O system and the theory of their formation. Clays Clay Miner 51:1457–1466Google Scholar
  44. Lahav E (1995) Banana nutrition. In: Gowen S (ed) Bananas and plantains. Chapman & Hall, London, pp 258–316Google Scholar
  45. Lucas Y, Luizao FJ, Chauvel A, Rouiller J, Nahon D (1993) The relation between biological-activity of the rainforest and mineral composition of soils. Science 260:521–523. doi:10.1126/science.260.5107.521 CrossRefGoogle Scholar
  46. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M et al (2006) A silicon transporter in rice. Nature 440:688–691. doi:10.1038/nature04590 CrossRefGoogle Scholar
  47. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T et al (2007) An efflux transporter of silicon in rice. Nature 448:209–213. doi:10.1038/nature05964 CrossRefGoogle Scholar
  48. Markewitz D, Richter DD (1998) The bio in aluminum and silicon geochemistry. Biogeochemistry 42:235–252. doi:10.1023/A:1005901417165 CrossRefGoogle Scholar
  49. Matichenkov VV, Bocharnikova EA, Calvert DV, Snyder GH (2000) Comparison study of soil silicon status in sandy soils of South Florida. Soil Crop Sci Soc Fla Proc 59:132–137Google Scholar
  50. Meunier JD, Colin F, Alarcon C (1999) Biogenic silica storage in soils. Geology 27:835–838. doi :10.1130/0091-7613(1999)027<;0835:BSSIS>;2.3.CO;2CrossRefGoogle Scholar
  51. Michalopoulos P, Aller RC (2004) Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim Cosmochim Acta 68:1061–1085. doi:10.1016/j.gca.2003.07.018 CrossRefGoogle Scholar
  52. Ndayiragije S (1996) Caractérisation d’une séquence d’altération de sols dérivés de matériaux pyroclastiques sous climat tropical humide des Antilles (Guadeloupe). PhD Thesis, Université catholique de LouvainGoogle Scholar
  53. Ndayiragije S, Delvaux B (2003) Coexistence of allophane, gibbsite, kaolinite and hydroxy-Al-interlayered 2: 1 clay minerals in a Perudic Andosol. Geoderma 117:203–214. doi:10.1016/S0016-7061(03)00123-X CrossRefGoogle Scholar
  54. Ndayiragije S, Delvaux B (2004) Selective sorption of potassium in a weathering sequence of volcanic ash soils from Guadeloupe, French West Indies. Catena 56:185–198. doi:10.1016/j.catena.2003.10.010 CrossRefGoogle Scholar
  55. Opfergelt S (2008) Silicon cycle in the soil-plant system: Biogeochemical tracing using Si isotopes. PhD Thesis, Université Catholique de Louvain, n° 127, Louvain-la-Neuve, p 311Google Scholar
  56. Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis: part 2, chemical and microbiological properties, 2nd edn. American Society of Agronomy and Soil Science Society of America, MadisonGoogle Scholar
  57. Parfitt RL, Wilson AD (1985) Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. In: Fernandez Caldas E, Yaalon DH (eds) Volcanic soils. Catena Verlag, Cremlingen, pp 914–974Google Scholar
  58. Parfitt RL, Russell M, Orbell GE (1983) Weathering sequence of soil from volcanic ash involving allophane and halloysite, New Zealand. Geoderma 29:41–57. doi:10.1016/0016-7061(83)90029-0 CrossRefGoogle Scholar
  59. Pochet G, Van der Velde M, Vanclooster M, Delvaux B (2007) Hydric properties of high charge, halloysitic clay soils from the tropical South Pacific region. Geoderma 138:96–109. doi:10.1016/j.geoderma.2006.10.019 CrossRefGoogle Scholar
  60. Ragueneau O, Savoye N, Del Amo Y, Cotten J, Tardiveau B, Leynaert A (2005) A new method for the measurement of biogenic silica in suspended matter of coastal waters: using Si:Al ratios to correct for the mineral interference. Cont Shelf Res 25:697–710. doi:10.1016/j.csr.2004.09.017 CrossRefGoogle Scholar
  61. Raven JA (1983) The transport and function of silicon in plants. Biol Rev Camb Philos Soc 58:179–207. doi:10.1111/j.1469-185X.1983.tb00385.x CrossRefGoogle Scholar
  62. Raven JA (2001) Silicon transport at the cell and tissue level. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, The Netherlands, pp 41–55CrossRefGoogle Scholar
  63. Rickert D, Schülter M, Wallmann K (2002) Dissolution kinetics of biogenic silica from the water column to the sediments. Geochim Cosmochim Acta 66:439–455. doi:10.1016/S0016-7037(01)00757-8 CrossRefGoogle Scholar
  64. Rouiller J, Burtin G, Souchier B (1972) La dispersion des sols dans l’analyse granulométrique Méthode utilisant les résines échangeuses d’ions. Bull ENSAIA Nancy 14:193–205Google Scholar
  65. Rufyikiri G, Dufey J, Nootens D, Delvaux B (2000) Effect of aluminium on bananas (Musa spp.) cultivated in acid solutions. I. plant growth and chemical composition. Fruits 55:367–379Google Scholar
  66. Rufyikiri G, Nootens D, Dufey J, Delvaux B (2001) Effect of aluminium on bananas (Musa spp.) cultivated in acid solutions. II. water and nutrient uptake. Fruits 56:3–14. doi:10.1051/fruits:2001107 CrossRefGoogle Scholar
  67. Rufyikiri G, Nootens D, Dufey JE, Delvaux B (2004) Mobilization of aluminium and magnesium by roots of banana (Musa spp.) from kaolinite and smectite clay minerals. Appl Geochem 19:633–643. doi:10.1016/j.apgeochem.2003.07.001 CrossRefGoogle Scholar
  68. Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D et al (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459. doi:10.1111/j.1365-2389.2007.00949.x CrossRefGoogle Scholar
  69. Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108. doi:10.1007/s10533-005-5879-3 CrossRefGoogle Scholar
  70. Schwandes LP, Snyder GH, Wilkerson J (2001) Plant-available silicon in selected alfisols and ultisols of Florida. Soil Crop Sci Soc Fla Proc 60:57–59Google Scholar
  71. Smithson F (1956) Plant opal in soil. Nature 178:107. doi:10.1038/178107a0 CrossRefGoogle Scholar
  72. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329. doi:10.1002/jpln.200521981 CrossRefGoogle Scholar
  73. Tréguer P, Nelson DM, Van Bennekom AJ, De Master DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379. doi:10.1126/science.268.5209.375 CrossRefGoogle Scholar
  74. Twyford IT, Walmsley D (1973) The mineral composition of the Robusta banana plant I methods and plant growth studies. Plant Soil 39:227–243. doi:10.1007/BF00014790 CrossRefGoogle Scholar
  75. Walkley A, Black IA (1934) An examination of the Degiareff method for determining SOM and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. doi:10.1097/00010694-193401000-00003 CrossRefGoogle Scholar
  76. Wilding LP, Drees LR (1971) Biogenic opal in Ohio soils. Soil Sci Soc Am Proc 35:1004–1010Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • C. Henriet
    • 1
  • N. De Jaeger
    • 1
  • M. Dorel
    • 2
  • S. Opfergelt
    • 1
  • B. Delvaux
    • 1
  1. 1.Unité des Sciences du SolUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Département des productions fruitières et horticolesCentre de coopération internationale en recherche agronomique pour le développement (CIRAD)Capesterre-Belle-EauGuadeloupe

Personalised recommendations