, Volume 90, Issue 1, pp 49–63 | Cite as

Biogeochemical response of organic-rich freshwater marshes in the Louisiana delta plain to chronic river water influx

  • Christopher M. SwarzenskiEmail author
  • Thomas W. Doyle
  • Brian Fry
  • Thomas G. Hargis
Original Paper


To help evaluate effects of Mississippi River inputs to sustainability of coastal Louisiana ecosystems, we compared porewater and substrate quality of organic-rich Panicum hemitomon freshwater marshes inundated by river water annually for more than 30 years (Penchant basin, PB) or not during the same time (Barataria basin, BB). In the marshes receiving river water the soil environment was more reduced, the organic substrate was more decomposed and accumulated more sulfur. The porewater dissolved ammonium and orthophosphate concentrations were an order of magnitude higher and sulfide and alkalinity concentrations were more than twice as high in PB compared with BB marshes. The pH was higher and dissolved iron concentrations were more than an order of magnitude lower in PB marshes than in BB marshes. The influx of nutrient-rich river water did not enhance end-of-year above-ground standing biomass or vertical accretion rates of the shallow substrate. The differences in porewater chemistry and substrate quality are reasonably linked to the long-term influx of river water through biogeochemical processes and transformations involving alkalinity, nitrate and sulfate. The key factor is the continual replenishment of alkalinity, nitrate and sulfate via overland flow during high river stage each year for several weeks to more than 6 months. This leads to a reducing soil environment, pooling of the phytotoxin sulfide and inorganic nutrients in porewater, and internally generated alkalinity. Organic matter decomposition is enhanced under these conditions and root mats degraded. The more decomposed root mat makes these marshes more susceptible to erosion during infrequent high-energy events (for example hurricanes) and regular low-energy events, such as tides and the passage of weather fronts. Our findings were unexpected and, if generally applicable, suggest that river diversions may not be the beneficial mitigating agent of wetland restoration and conservation that they are anticipated to be.


Alkalinity Freshwater diversions Organic matter decomposition Sulfate Wetland restoration 



David Muth and the late Robert Belous of the National Park Service (NPS), Jean Lafitte National Historical Park and Preserve (JELA) provided essential support. Continental Land and Fur, Inc., Metairie, LA. provided access to the Penchant Basin marshes. JG Gosselink, K McKee and RE Turner reviewed and helped improve early versions of this manuscript. The work was supported by JELA and a USGS/NPS water-quality partnership. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.


  1. Armstrong J, Armstrong W (2001) An overview of the effects of phytotoxins on Phragmites australis in relation to die-back. Aquat Bot 69:251–268. doi: 10.1016/S0304-3770(01)00142-5 CrossRefGoogle Scholar
  2. Barras J, Beville S, Britsch D, Hartley S, Hawes S, Johnston J et al (2003) Historical and projected coastal Louisiana land changes 1978–2050. U.S. Geological Survey Open-File Report 03-334Google Scholar
  3. Boar RR, Crook CE, Moss B (1989) Regression of Phragmites australis reed swamps and recent changes of water chemistry in the Norfolk Broadland, England. Aquat Bot 35:41–55. doi: 10.1016/0304-3770(89)90065-X CrossRefGoogle Scholar
  4. Boesch DF, Josselyn MN, Ashish JM, Morris JT, Nuttle WK, Simenstad CA et al (1994) Scientific assessment of coastal wetland loss, restoration and management in Louisiana. J Coast Res Special Issue 20:103Google Scholar
  5. Bohn HL (1971) Redox potentials. Soil Sci 112:39–45CrossRefGoogle Scholar
  6. Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N et al (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA 103:19386–19389. doi: 10.1073/pnas.0606629104 CrossRefGoogle Scholar
  7. Brouwer E, Soontiens J, Bobbink R, Roelofs JGM (1999) Sulfate and bicarbonate as key factors in sediment degradation and restoration of Lake Baben. Aquat Conserv: Mar Freshwat Ecosyst 9:121–132. doi :10.1002/(SICI)1099-0755(199901/02)9:1<121::AID-AQC322>3.0.CO;2-WCrossRefGoogle Scholar
  8. Cizkova H, Brix H, Kopecky J, Lukavska J (1999) Organic acids in the sediments of wetlands dominated by Phragmites australis: evidence of phytotoxic concentrations. Aquat Bot 64:303–315. doi: 10.1016/S0304-3770(99)00058-3 CrossRefGoogle Scholar
  9. Cizkova H, Pechar L, Husak S, Kvet J, Bauer V, Radova J et al (2001) Chemical characteristics of soils and porewaters of three wetland sites dominated by Phragmites australis: relation to vegetation composition and reed performance. Aquat Bot 69:235–249. doi: 10.1016/S0304-3770(01)00141-3 CrossRefGoogle Scholar
  10. Clark GM, Goolsby DA, Battaglin WA (1999) Seasonal and annual load of herbicides from the Mississippi River Basin to the Gulf of Mexico. Environ Sci Technol 33:981–986. doi: 10.1021/es980962u CrossRefGoogle Scholar
  11. Clevering O (1998) An investigation into the effects of nitrogen on growth and morphology of stable and die-back population of Phragmites australis. Aquat Bot 60:11–25. doi: 10.1016/S0304-3770(97)00069-7 CrossRefGoogle Scholar
  12. Coastal Protection and Restoration Authority of Louisiana (2007) Integrated ecosystem restoration and hurricane protection: Louisiana’s comprehensive master plan for a sustainable coast. Accessed 4 July 2007
  13. Day JW, Boesch DF, Clairain EJ, Kemp GP, Laska SB, Mitsch WJ et al (2007) Restoration of the Mississippi Delta: lessons from Hurricanes Katrina and Rita. Science 23:1679–1684. doi: 10.1126/science.1137030 CrossRefGoogle Scholar
  14. DeLaune RD, Smith CJ, Sarafyan MN (1986) Nitrogen cycling in a freshwater marsh of Panicum hemitomon on the deltaic plain of the Mississippi River. J Ecol 74:249–256. doi: 10.2307/2260361 CrossRefGoogle Scholar
  15. DeLaune RD, Jugsujinda A, Peterson GW, Patrick WH Jr (2003) Impact of Mississippi River freshwater reintroduction on enhancing marsh accretionary processes in a Louisiana estuary. Estuar Coast Shelf Sci 58:653–662. doi: 10.1016/S0272-7714(03)00177-X CrossRefGoogle Scholar
  16. DeLaune RD, Pezeshki SR, Jugsujinda A (2005a) Impact of Mississippi River freshwater reintroduction on Spartina patens marsh: response to nutrient input and lowering of salinity. Wetlands 25:151–161. doi: 10.1672/0277-5212(2005)025[0155:IOMRFR]2.0.CO;2 CrossRefGoogle Scholar
  17. DeLaune RD, Jugsujinda A, West JL, Johnson CB, Kongchum M (2005b) A screening of the capacity of Louisiana freshwater wetlands to process nitrate in diverted Mississippi River water. Ecol Eng 25:315–321. doi: 10.1016/j.ecoleng.2005.06.001 CrossRefGoogle Scholar
  18. Demcheck DK, Swarzenski CM (2003) Atrazine in southern Louisiana streams, 1998–2000. U.S. Geological Survey Fact Sheet FS-011-03Google Scholar
  19. Dole RB (1909) The quality of surface waters in the United States, part I.—analysis of waters east of the one hundredth meridian. U.S. Geological Survey Water-Supply Paper 236, 123 ppGoogle Scholar
  20. Eggelsmann R (1960) Über die Höhenänderung der Mooroberfläche infolge von Sackung und Humusverzehr sowie Abhängigket von Azidität, “Atmung” und anderen Einflüssen. Mitteilungen über die Arbeiten der staatlichen Moorversuchsstation Bremen 8:99–132Google Scholar
  21. Evers DE, Holm GO Jr, Sasser CE (1996) Digitization of the floating marsh maps in the Barataria and Terrebonne Basins, Louisiana. Barataria-Terrebonne National Estuarine Program, BTNEP Publication 28, Thibodaux, LaGoogle Scholar
  22. Fishman MJ (1993) Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of inorganic and organic constituents in water and fluvial sediments. U.S. Geological Survey Open-File Report 93-125Google Scholar
  23. Franzen LG (2006) Increased decomposition of subsurface peat in Swedish raised bogs: are temperate peatlands still net sinks of carbon? Mires and Peat, 1 (Online at, Accessed 31 October 2006)
  24. Fry B (2007) Coupled N, C and S stable isotope measurements using a dual-column gas chromatography system. Rapid Commun Mass Spectrom 21:750–756. doi: 10.1002/rcm.2892 CrossRefGoogle Scholar
  25. Fry B, Allen Y (2003) Stable isotopes in zebra mussels as bioindicators of river-watershed linkages. River Res Appl 19:683–696. doi: 10.1002/rra.715 CrossRefGoogle Scholar
  26. Hargis TG, Twilley RR (1994a) A multi-depth probe for measuring oxidation-reduction (redox) potential in wetland soils. J Sed Res 64:684–685Google Scholar
  27. Hargis TG, Twilley RR (1994b) Improved coring device for measuring soil bulk density in a Louisiana deltaic marsh. J Sed Res 64:1–3Google Scholar
  28. Hatton RS, DeLaune RD, Patrick WH Jr (1983) Sedimentation, accretion and subsidence in marshes of Barataria Basin, Louisiana. Limnol Oceanogr 28:494–502Google Scholar
  29. Koch MS, Mendelssohn IA (1989) Sulfide as a soil phytotoxin—differential responses in two marsh species. J Ecol 77:565–578. doi: 10.2307/2260770 CrossRefGoogle Scholar
  30. Kuntze H, Bartels R, Scheffer B (1990) Zum Einfluss des pH-Wertes auf die Bodeneigenschaften Deutscher Hochmoorkulturen. Telma 20:221–250Google Scholar
  31. Lamers LPM, Tomassen HBM, Roelofs JGM (1998) Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32:199–205. doi: 10.1021/es970362f CrossRefGoogle Scholar
  32. Lamers LPM, Ten Dolle GE, Van den Berg STG, Van Delft SPJ, Roelofs JGM (2002) Differential responses of freshwater wetland soils to sulfate pollution. Biogeochemistry 55:87–102. doi: 10.1023/A:1010629319168 CrossRefGoogle Scholar
  33. Lane RR, Day JW Jr, Day JN (2006) Wetland surface elevation, vertical accretion, and subsidence at three Louisiana estuaries receiving diverted Mississippi River water. Wetlands 26:1130–1142. doi: 10.1672/0277-5212(2006)26[1130:WSEVAA]2.0.CO;2 CrossRefGoogle Scholar
  34. Langan MM, Hoagland KD (1996) Growth responses of Typha latifolia and Scirpus acutus to atrazine contamination. Bull Environ Contam Toxicol 57:307–314. doi: 10.1007/s001289900191 CrossRefGoogle Scholar
  35. Loeb R, van Daalen E, Lamers LPM, Roelefs JGM (2007) How soil characteristics and water quality influence the biogeochemical response to flooding in riverine wetlands. Biogeochemistry 85:289–302. doi: 10.1007/s10533-007-9135-x CrossRefGoogle Scholar
  36. Lynn WC, McKinzie WE, Grossman RB (1974) Field laboratory tests for the characterization of histosols. In: Stelly M (ed) Histosols, their characteristics, classification and use. Soil Science Society of America Special Publication No. 6Google Scholar
  37. Mack MC, Shuur EAG, Bretharte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443. doi: 10.1038/nature02887 CrossRefGoogle Scholar
  38. McGinnis TE II (1997) Factors of soil strength and shoreline movement in a Louisiana coastal marsh. MS Thesis, University of Southwestern Louisiana, Lafayette, LAGoogle Scholar
  39. McKee KL, Cahoon DR, Feller CI (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–688. doi: 10.1111/j.1466-8238.2007.00317.x CrossRefGoogle Scholar
  40. McMillin DJ, Means JC (1996) Spatial and temporal trends of pesticide residues in water and particulates in the Mississippi River plume and the northwestern Gulf of Mexico. J Chromat 754:169–185. doi: 10.1016/S0021-9673(96)00325-1 CrossRefGoogle Scholar
  41. Meade RH (1995) Contaminants in the Mississippi River. U.S. Geological Survey Circular 1133Google Scholar
  42. Mendelssohn IA, Turner RE, McKee KL (1983) Louisiana’s eroding coastal zone—management alternatives. J Limnol Soc S Afr 9:63–75Google Scholar
  43. Mendelssohn IA, Sorrell BK, Brix H, Schierup HH, Lorenzen B, Maltby E (1999) Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark. Aquat Bot 64:381–398. doi: 10.1016/S0304-3770(99)00065-0 CrossRefGoogle Scholar
  44. Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. New York, WileyGoogle Scholar
  45. Morris JT, Bradley PM (1999) Effects of nutrient loading on the carbon balance of coastal wetland sediments. Limnol Oceanogr 44:699–702Google Scholar
  46. O’Neil T (1949) The muskrat in the Louisiana coastal marshes. Louisiana Department of Wildlife and Fisheries, New OrleansGoogle Scholar
  47. Roelofs JGM (1991) Inlet of alkaline river water into peaty lowlands—effects on water quality and Stratiotes aloides L. stands. Aquat Bot 39:267–294. doi: 10.1016/0304-3770(91)90004-O CrossRefGoogle Scholar
  48. Rounds SA, Wilde FD (2001) Alkalinity and acid neutralizing capacity. In: Wilde FD, Radtke DB (eds) National field manual for the collection of water-quality data. U.S. Geological Survey, Techniques of Water-Resources Investigations. Book 9, Chap. 6.6Google Scholar
  49. Russell RJ (1942) Flotant. Geogr Rev 32:74–98. doi: 10.2307/210360 CrossRefGoogle Scholar
  50. Saarinen T (1998) Internal C:N balance and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply. Can J Bot 76:762–768. doi: 10.1139/cjb-76-5-762 CrossRefGoogle Scholar
  51. Santruckova H, Picek T, Simek M, Bauer V, Kopecky J, Pechar L et al (2001) Decomposition processes in soil of a healthy and a declining Phragmites australis stand. Aquat Bot 69:217–234. doi: 10.1016/S0304-3770(01)00140-1 CrossRefGoogle Scholar
  52. Smolders AJP, Roelofs JGM (1995) Internal eutrophication, iron limitation and sulphide accumulation due to the inlet of Rhine river water in peaty shallow waters in the Netherlands. Arch Hydrobiol 133:349–365Google Scholar
  53. Smolders AJP, Lamers LPM, Lucassen ECHET, Roelofs JGM (2006) Internal eutrophication: how it works and what to do about it—a review. Chem Ecol 22:93–111. doi: 10.1080/02757540600579730 CrossRefGoogle Scholar
  54. Snedden GA, Cable JE, Swarzenski CM, Swenson EM (2006) Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion. Estuar Coast Shelf Sci 71:181–193. doi: 10.1016/j.ecss.2006.06.035 CrossRefGoogle Scholar
  55. Swarzenski CM (2003) Surface-water hydrology of the Gulf Intracoastal Waterway in south-central Louisiana, 1996–99. U.S. Geological Survey Professional Paper 1672Google Scholar
  56. Swarzenski CM, Swenson EM, Sasser CE, Gosselink JG (1991) Marsh mat flotation in the Louisiana delta plain. J Ecol 79:999–1011. doi: 10.2307/2261094 CrossRefGoogle Scholar
  57. Turner RE, Cahoon DR (1987) Causes of wetland loss in the coastal central Gulf of Mexico. Final report submitted to Minerals Management Services, New Orleans, Louisiana, OCS Study/MMS 87–0119Google Scholar
  58. Turner RE, Rabalais NN (1991) Changes in Mississippi River water quality this century—implications for coastal food webs. Bioscience 41:140–147. doi: 10.2307/1311453 CrossRefGoogle Scholar
  59. Turner RE, Swenson EM, Milan CS, Lee JM, Oswald TA (2004) Below-ground biomass in healthy and impaired salt marshes. Ecol Res 19:29–35. doi: 10.1111/j.1440-1703.2003.00610.x CrossRefGoogle Scholar
  60. Ulrich KE, Burton TM (1985) The effects of nitrate, phosphate and potassium fertilization on growth and nutrient uptake patterns of Phragmites australis. Aquat Bot 21:53–62. doi: 10.1016/0304-3770(85)90095-6 CrossRefGoogle Scholar
  61. U.S. Environmental Protection Agency (1983) Methods for the chemical analysis of water and wastes. EPA-600/4-79-020Google Scholar
  62. Van der Putten WH (1997) Die-back of Phragmites australis in European wetlands: an overview of the European Research Programme on reed die-back and progression. Aquat Bot 59:263–275. doi: 10.1016/S0304-3770(97)00060-0 CrossRefGoogle Scholar
  63. Van der Welle MEW, Cuppens MLC, Lamers LPM, Roelefs JGM (2006) Detoxifying toxicants: interactions between sulfide and iron toxicity. Environ Toxicol Chem 25:1592–1597. doi: 10.1897/05-283R.1 CrossRefGoogle Scholar
  64. Wells FC, Demas CR (1977) Hydrology and water quality of the Atchafalaya River basin. Louisiana Department of Transportation and Development, Office of Public Works Water Resources Technical Report no. 14, Baton RougeGoogle Scholar
  65. Whitfield M (1969) Eh as an operational parameter in estuarine studies. Limnol Oceanogr 14:547–558CrossRefGoogle Scholar
  66. Wieder RK, Yavitt JB, Lang GE (1992) Sulfur inputs may affect organic carbon balance of Sphagnum-dominated wetlands. Appendix to Chapter 5. In: Howarth RW, Stewart JWB, Ivanov MV (eds) Sulphur cycling on the continents—wetlands, terrestrial ecosystems, and associated water bodies. Scientific Committee on Problems of the Environment 48. Accessed at

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Christopher M. Swarzenski
    • 1
    Email author
  • Thomas W. Doyle
    • 2
  • Brian Fry
    • 3
  • Thomas G. Hargis
    • 4
  1. 1.USGS Louisiana Water Science CenterBaton RougeUSA
  2. 2.USGS National Wetland Research CenterLafayetteUSA
  3. 3.Coastal Ecology InstituteLouisiana State UniversityBaton RougeUSA
  4. 4.IAP World Services, National Wetland Research CenterLafayetteUSA

Personalised recommendations