Biogeochemistry

, Volume 90, Issue 1, pp 15–27 | Cite as

Dual isotope analyses indicate efficient processing of atmospheric nitrate by forested watersheds in the northeastern U.S.

  • Rebecca T. Barnes
  • Peter A. Raymond
  • Karen L. Casciotti
Article

Abstract

Nitrogen from atmospheric deposition serves as the dominant source of new nitrogen to forested ecosystems in the northeastern U.S. By combining isotopic data obtained using the denitrifier method, with chemical and hydrologic measurements we determined the relative importance of sources and control mechanisms on nitrate (NO3) export from five forested watersheds in the Connecticut River watershed. Microbially produced NO3 was the dominant source (82–100%) of NO3 to the sampled streams as indicated by the δ15N and δ18O of NO3. Seasonal variations in the δ18O–NO3 in streamwater are controlled by shifting hydrologic and temperature affects on biotic processing, resulting in a relative increase in unprocessed NO3 export during winter months. Mass balance estimates find that the unprocessed atmospherically derived NO3 stream flux represents less than 3% of the atmospherically delivered wet NO3 flux to the region. This suggests that despite chronically elevated nitrogen deposition these forests are not nitrogen saturated and are retaining, removing, and reprocessing the vast majority of NO3 delivered to them throughout the year. These results confirm previous work within Northeastern U.S. forests and extend observations to watersheds not dominated by a snow-melt driven hydrology. In contrast to previous work, unprocessed atmospherically derived NO3 export is associated with the period of high recharge and low biotic activity as opposed to spring snowmelt and other large runoff events.

Keywords

Atmospheric deposition Nitrate processing Nitrogen Northeastern forests Stable isotopes 

Abbreviations

ANOVA

Analysis of variance

CASTNet

Clean Air Status and Trends Network

DIN

Dissolved inorganic nitrogen

IAEA

International Atomic Energy Agency

18O

Oxygen-18

15N

Nitrogen-15

NADP

National Atmospheric Deposition Program

NH4+

Ammonium

NO3

Nitrate

NO2

Nitrite

VSMOW

Vienna standard mean ocean water

δ

delta

per mill

References

  1. Aber JD, Driscoll CT (1997) Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests. Global Biogeochem Cycles 11:639–648. doi:10.1029/97GB01366 CrossRefGoogle Scholar
  2. Aber JD, Ollinger SV, Driscoll CT (1997) Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition. Ecol Appl 101:61–78Google Scholar
  3. Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M et al (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48:921–934. doi:10.2307/1313296 CrossRefGoogle Scholar
  4. Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME et al (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389. doi:10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2 CrossRefGoogle Scholar
  5. Andersson KK, Hooper AB (1983) O2 and H2O are each the source of one O in NO2 produced from NH3 by nitrosomonas - N-15-Nmr evidence. FEBS Lett 164:236–240. doi:10.1016/0014-5793(83)80292-0 CrossRefGoogle Scholar
  6. Band LE, Tague CL, Groffman P, Belt K (2001) Forest ecosystem processes at the watershed scale: hydrological and ecological controls of nitrogen export. Hydrol Process 15:2013–2028. doi:10.1002/hyp.253 CrossRefGoogle Scholar
  7. Bernhardt ES, Likens GE, Hall RO, Buso DC, Fisher SG, Burton TM et al (2005) Can’t see the forest for the stream? In-stream processing and terrestrial nitrogen exports. Bioscience 55:219–230. doi:10.1641/0006-3568(2005)055[0219:ACSTFF]2.0.CO;2 CrossRefGoogle Scholar
  8. Böhlke JK, Mroczkowski SJ, Coplen TB (2003) Oxygen isotopes in nitrate: new reference materials for O-18:O-17:O-16 measurements and observations on nitrate–water equilibration. Rapid Commun Mass Spectrom 17:1835–1846. doi:10.1002/rcm.1123 CrossRefGoogle Scholar
  9. Boyer EW, Goodale C, Jaworski NA, Howarth RW (2002) Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry 57(58):137–169. doi:10.1023/A:1015709302073 CrossRefGoogle Scholar
  10. Brooks PD, Campbell DH, Tonnessen KA, Heuer K (1999) Natural variability in N export from headwater catchments: snow cover controls on ecosystem N retention. Hydrol Process 13:2191–2201. doi :10.1002/(SICI)1099-1085(199910)13:14/15<2191::AID-HYP849>3.0.CO;2-LCrossRefGoogle Scholar
  11. Burns DA, Kendall C (2002) Analysis of δ15N and δ18O to differentiate NO3 sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resour Res 38:1029–1041. doi:10.1029/2001WR000292 CrossRefGoogle Scholar
  12. Burns DA, Murdoch PS, Lawrence GB, Michel RL (1998) Effect of groundwater springs on NO3 concentrations during summer in Catskill Mountain streams. Water Resour Res 34:1987–1996. doi:10.1029/98WR01282 CrossRefGoogle Scholar
  13. Campbell DH, Kendall C, Chang CCY, Silva SR, Tonnessen KA (2002) Pathways for nitrate release from an alpine watershed: determination using δ15N and δ18O. Water Resour Res 38:1052–1071. doi:10.1029/2001WR000294 CrossRefGoogle Scholar
  14. Carley RJ, Perkins C, Trahiotis M (2001) Nitrogen deposition monitoring in Connecticut, February 7, 1997–February 4, 2000. Environmental Research Institute, Storrs, CT, p 35Google Scholar
  15. Casciotti KL, McIlvin MR (2007) Isotopic analyses of nitrate and nitrite from reference mixtures and application to Eastern Tropical North Pacific waters. Mar Chem 107:184–201. doi:10.1016/j.marchem.2007.06.021 CrossRefGoogle Scholar
  16. Casciotti KL, Sigman DM, Hastings MG, Böhlke JK, Hilkert A (2002) Measurement of the Oxygen Isotopic Composition of Nitrate in Seawater and Freshwater Using the Denitrifier Method. Anal Chem 74:4905–4912. doi:10.1021/ac020113w CrossRefGoogle Scholar
  17. Casciotti KL, Böhlke JK, McIlvin MR, Mroczkowski SJ, Hannon JE (2007) Oxygen isotopes in nitrite: analysis, calibration, and equilibration. Anal Chem 79:2427–2436. doi:10.1021/ac061598h CrossRefGoogle Scholar
  18. Chang CCY, Kendall C, Silva SR, Battaglin WA, Campbell DH (2002) Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Can J Fish Aquat Sci 59:1874–1885. doi:10.1139/f02-153 CrossRefGoogle Scholar
  19. Christ MJ, Peterjohn WT, Cumming JR, Adams MB (2002) Nitrification potentials and landscape, soil and vegetation characteristics in two Central Appalachian watersheds differing in NO3- export. For Ecol Manage 159:145–158CrossRefGoogle Scholar
  20. Davidson EA, Chorover J, Dail DB (2003) A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Glob Change Biol 9:228–236. doi:10.1046/j.1365-2486.2003.00592.x CrossRefGoogle Scholar
  21. Durka W, Schulze E-D, Gebauer G, Voerkelius S (1994) Effect of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767. doi:10.1038/372765a0 CrossRefGoogle Scholar
  22. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0 CrossRefGoogle Scholar
  23. Goodale C, Aber J, McDowell WH (2000) The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems (NY, Print) 3:433–450. doi:10.1007/s100210000039 CrossRefGoogle Scholar
  24. Groffman P, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001) Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry 56:191–213. doi:10.1023/A:1013024603959 CrossRefGoogle Scholar
  25. Hales HC, Ross DS, Lini A (2007) Isotopic signature of nitrate in two contrasting watersheds of Brush Brook, Vermont, USA. Biogeochemistry. doi:10.1007/s10533-10007-19074-10536
  26. Hastings MG, Steig EJ, Sigman DM (2004) Seasonal variations in N and O isotopes of nitrate in snow at Summit, Greenland: implications for the study of nitrate in snow and ice cores. J Geophys Res-Atmos 109. doi:10.1029/2004JD004991
  27. Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, New YorkCrossRefGoogle Scholar
  28. Hollocher TC (1984) Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation. Arch Biochem Biophys 233:721–727. doi:10.1016/0003-9861(84)90499-5 CrossRefGoogle Scholar
  29. Holloway JM, Dahlgren RA, Hansen B, Casey WH (1998) Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature 395:785–788. doi:10.1038/27410 CrossRefGoogle Scholar
  30. Hong BG, Swaney DP, Weinstein DA (2006) Simulating spatial nitrogen dynamics in a forested reference watershed, Hubbard Brook Watershed 6, New Hampshire, USA. Landscape Ecol 21:195–211. doi:10.1007/s10980-005-0145-6 CrossRefGoogle Scholar
  31. Kaiser J, Hastings MG, Houlton BZ, Rockmann T, Sigman DM (2007) Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal Chem 79:599–607. doi:10.1021/ac061022s CrossRefGoogle Scholar
  32. Kendall C (1998) Tracing nitrogen sources and cycles in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, AmsterdamGoogle Scholar
  33. Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363–1393. doi:10.1002/hyp.217 CrossRefGoogle Scholar
  34. Kumar S, Nicholas DJD, Williams EH (1983) Definitive N-15 NMR evidence that water services as a source of O during nitrite oxidation by Nitrobacter-Agilis. FEBS Lett 152:71–74. doi:10.1016/0014-5793(83)80484-0 CrossRefGoogle Scholar
  35. Lawrence G, Lovett GM, Baevsky Y (2000) Atmospheric deposition and watershed nitrogen export along an elevational gradient in the Catskill Mountiains, New York. Biogeochemistry 50:21–43. doi:10.1023/A:1006332230890 CrossRefGoogle Scholar
  36. Lim KJ, Engle BA, Tang Z, Choi J, Kim K-S, Meuthukrishnan S et al (2005) Automated Web GIS based Hydrograph Analysis Tool, WHAT. J Am Water Resour Assoc 41:1407–1416. doi:10.1111/j.1752-1688.2005.tb03808.x CrossRefGoogle Scholar
  37. Luo Y, Yang X, Carley RJ, Perkins C (2003) Effects of geographical location and land use on atmospheric deposition of nitrogen in the State of Connecticut. Environ Pollut 124:437–448. doi:10.1016/S0269-7491(03)00043-5 CrossRefGoogle Scholar
  38. McIlvin MR, Altabet M (2005) Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem 77:5589–5595. doi:10.1021/ac050528s CrossRefGoogle Scholar
  39. Miller DR, Warner GS, Ogden FL, DeGaetano AT (2002) Precipitation in Connecticut. Connecticut Institute of Water Resources, p 66Google Scholar
  40. Mitchell MJ, Driscoll CT, Kahl JS, Likens GE, Murdoch P, Pardo LH (1996) Climatic control of nitrate loss from forested watersheds in the northeastern United States. Environ Sci Technol 30:2609–2612CrossRefGoogle Scholar
  41. MRLC (2005) National Land Cover Characterization 2001 (NLCD 2001). http://www.mrlc.gov/mrlc2k_nlcd.asp
  42. NADP (2007) NADP/NTN monitoring location CT15. NADP Program Office, Illinois State Water Survey, Champaign, ILGoogle Scholar
  43. NRC (2000) Clean coastal waters: understanding and reducing the effects of nutrient pollution. National Academy Press, Washington, DCGoogle Scholar
  44. Ohte N, Sebestyen SD, Shanley JB, Doctor DH, Kendall C, Wankel SD, Boyer EW (2004) Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique. Geophys Res Lett 31:L21506. doi:21510.21029/22004GL020908 CrossRefGoogle Scholar
  45. Pardo LH, Kendall C, Pett-Ridge J, Chang CCY (2004) Evaluating the source of streamwater nitrate using δ15N and δ18O in nitrate in two watersheds in New Hampshire, USA. Hydrol Process 18:2699–2712. doi:10.1002/hyp.5576 CrossRefGoogle Scholar
  46. Révész K, Böhlke JK (2002) Comparison of O-delta 18 measurements in nitrate by different combustion techniques. Anal Chem 74:5410–5413. doi:10.1021/ac025854b CrossRefGoogle Scholar
  47. Rodgers J (1985) Bedrock geological map of Connecticut. CT Geological and Natural History Survey, DEP. USGS, Hartford, CTGoogle Scholar
  48. Schaefer SC, Alber M (2007) Temperature controls a latitudinal gradient in the proportion of watershed nitrogen exported to coastal ecosystems. Biogeochemistry 85:333–346. doi:10.1007/s10533-007-9144-9 CrossRefGoogle Scholar
  49. Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Böhlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153. doi:10.1021/ac010088e CrossRefGoogle Scholar
  50. Silva SR, Kendall C, Wilkison DH, Ziegler AC, Chang CCY, Avanzino RJ (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J Hydrol (Amst) 228:22–36. doi:10.1016/S0022-1694(99)00205-X CrossRefGoogle Scholar
  51. Stoddard JL (1994) Long-term changes in watershed retention of nitrogen: its causes and aquatic consequences. In: Baker LA (ed) Environmental chemistry of lakes and reserviors. American Chemical Society, Washington, DCGoogle Scholar
  52. Stone JR, Schafer JP, London EH, Thompson WB (1992) Surficial materials map of Connecticut, Scale 1:125,000. U.S. Geological Survey, Hartford, CTGoogle Scholar
  53. USEPA (2007) Clean air markets—data and maps. http://camddataandmaps.epa.gov/gdm/index.cfm?fuseaction=iss.isshome
  54. USGS (2007) National Water Information System. http://waterdata.usgs.gov/nwis
  55. USGS & USEPA (2005) National Hydrography Dataset Plus- NHDPlus. http://www.horizon-systems.com/nhdplus/index.php
  56. Van Breemen N, Boyer E, Goodale C, Jaworski NA, Paustian K, Seitzinger SP et al (2002) Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A. Biogeochemistry 57(58):267–293. doi:10.1023/A:1015775225913 CrossRefGoogle Scholar
  57. Vitousek PM, Reiners WA (1975) Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25:376–381. doi:10.2307/1297148 CrossRefGoogle Scholar
  58. Williard KWJ, DeWalle DR, Edwards PJ (2005) Influence of bedrock geology and tree species composition on stream nitrate concentrations in Mid-Appalachian forested watersheds. Water Air Soil Pollut 160:55–76. doi:10.1007/s11270-005-3649-4 CrossRefGoogle Scholar
  59. Williard KWJ, DeWalle DR, Edwards PJ, Sharpe WE (2001) 18O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds. J Hydrol (Amst) 252:174–188. doi:10.1016/S0022-1694(01)00459-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rebecca T. Barnes
    • 1
  • Peter A. Raymond
    • 1
  • Karen L. Casciotti
    • 2
  1. 1.Yale School of Forestry & Environmental StudiesNew HavenUSA
  2. 2.Department of Marine Chemistry & GeochemistryWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations