Biogeochemistry

, Volume 89, Issue 3, pp 367–377 | Cite as

Nitrogen ebullition in a Colorado plains river

  • Tara M. Higgins
  • James H. McCutchanJr
  • William M. LewisJr
Original Paper

Abstract

Rates of ebullition and composition of bubbles were measured along a nutrient-enriched segment of the South Platte River below Denver, Colorado. Ebullition was widespread in the South Platte up to 81 km downstream from Denver. Ebullitive fluxes of 0.44 and 0.29 g N m−2 d−1 were recorded at two sites downstream of Denver and represented 6–16% of the diffusive N2 efflux from this region. These data indicate that not accounting for ebullitive N2 losses can, at some locations, lead to a considerable underestimation of dentrification rates using the open-channel (gas exchange) method. Gas bubbles often were >98% N2; methane dominated in a few organic-rich areas. Rates of ebullition related significantly to variations in temperature and dissolved organic carbon. Ebullition was not observed in four tributaries of the South Platte River, despite their moderate to high concentrations of nitrate and dissolved organic carbon. The data demonstrate that ebullition can contribute significantly to N2 effluxes in running waters exhibiting high rates of denitrification.

Keywords

Denitrification Ebullition Nitrogen Bubbles South Platte River 

Notes

Acknowledgements

This work was supported by a Fulbright scholarship sponsored by Teagasc Ireland. The authors are grateful to Eldorado Artesian Springs, Inc., Louisville, Colorado, for donating materials for gas collection chambers, and Susan Crookall at the USDA Agricultural Research Service in Fort Collins, Colorado, for N2O analysis. We also wish to thank Gary Lovett and two anonymous reviewers for their helpful comments and suggestions.

References

  1. APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington DCGoogle Scholar
  2. Blicher-Mathiesen G, McCarty GW, Neilsen LP (1998) Denitrification and degassing in groundwater estimated from dissolved dinitrogen and argon. J Hyrol 208:16–24Google Scholar
  3. Böhlke JK, Harvey JW, Voytek MA (2004) Reach-scale isotope tracer experiment to quantify denitrification and related processes in a nitrate-rich stream, midcontinent United States. Limnol Oceanogr 49:821–838Google Scholar
  4. Chanton JP, Whiting GJ (1995) Trace gas exchange in freshwater and coastal marine environments: ebullition and transport by plants. In: Matson PA, Harriss RC (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell Science, Oxford, pp 98–125Google Scholar
  5. Chanton JP, Martens CS, Kelley CA (1989) Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnol Oceanogr 34:807–819Google Scholar
  6. Chareonsilp N, Buddhaboon C, Promnart P, Wassmann R, Lantin RS (2000) Methane emission from deepwater rice fields in Thailand. Nutr Cycl Agroecosyst 58:121–130. doi: 10.1023/A:1009890418537 CrossRefGoogle Scholar
  7. Clément JC, Pinay G, Marmonier P (2002) Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. J Environ Qual 30:1025–1037CrossRefGoogle Scholar
  8. Clough TJ, Rolston DE, Stevens RJ, Laughlin RJ (2003) N2O and N2 gas fluxes, soil gas pressures, and ebullition events following irrigation of 15NO−3-labelled subsoils. Aust J Soil Res 41:401–420. doi: 10.1071/SR02104 CrossRefGoogle Scholar
  9. Clough TJ, Bertram JE, Sherlock RR, Leonard RL, Norwick BL (2005) Comparison of measured and EF5-r-derived N2O fluxes from a spring-fed river. Glob Change Biol 11:1–12. doi: 10.1111/j.1529-8817.2003.00895.x CrossRefGoogle Scholar
  10. Cornwell JC, Kemp WM, Kana TM (1999) Denitrification in coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquat Ecol 33:41–54. doi: 10.1023/A:1009921414151 CrossRefGoogle Scholar
  11. Cronin G, McCutchan JH, Pitlick J, Lewis WM (2007) Use of Shields stress to reconstruct and forecast changes in river metabolism. Freshw Biol 52:1587–1601. doi: 10.1111/j.1365-2427.2007.01790.x CrossRefGoogle Scholar
  12. Davi ML, Bignami S, Milan C, Liboni M, Malfatto MG (1993) Determination of nitrate in surface waters by ion-exchange chromatography after oxidation of total organic nitrogen to nitrate. J Chromatogr A 644:345–348. doi: 10.1016/0021-9673(93)80718-N CrossRefGoogle Scholar
  13. Forshay KJ, Stanley EH (2005) Rapid nitrate loss and denitrification in a temperate river floodplain. Biogeochemistry 75:43–64. doi: 10.1007/s10533-004-6016-4 CrossRefGoogle Scholar
  14. Grashoff K (1976) Determination of dissolved oxygen and nutrients. In: Grashoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis. Verlag Chemie, Weinheim, Denmark, pp 126–137Google Scholar
  15. Harremoes P, Jansen JC, Kristensen GH (1980) Practical problems related to nitrogen bubble formation in fixed film reactors. Prog Water Technol 12:253–269Google Scholar
  16. Hill A (1979) Denitrification in the nitrogen budget of a river ecosystem. Nature 281:291–292. doi: 10.1038/281291a0 CrossRefGoogle Scholar
  17. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K et al (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:181–226. doi: 10.1007/BF02179827 CrossRefGoogle Scholar
  18. Kana T, Darkangelo C, Hunt M, Oldham J, Bennett G, Cornwell J (1994) Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal Chem 66:4166–4170. doi: 10.1021/ac00095a009 CrossRefGoogle Scholar
  19. Kana TM, Sullivan MB, Cornwell JC, Groszkowski KM (1998) Denitrification in estuarine sediments determined by membrane inlet mass spectrometry. Limnol Oceanogr 43:334–339Google Scholar
  20. Kemp MJ, Dodds WK (2002) Comparisons of nitrification and denitrification in prairie and agriculturally influenced streams. Ecol Appl 12:998–1009. doi: 10.1890/1051-0761(2002)012[0998:CONADI]2.0.CO;2 CrossRefGoogle Scholar
  21. Kilpatrick FA, Rathbun RE, Yotsukura N, Parker GW, DeLong LL (1989) Determination of stream reaeration coefficients by use of tracers. Techniques of Water-Resources Investigations of the U.S. Geological Survey 3-A18Google Scholar
  22. Kipphut GW, Martens CS (1982) Biogeochemical cycling in an organic-rich coastal marine basin-3. Dissolved gas transport in methane-saturated sediments. Geochim Cosmochim Acta 46:2049–2060. doi: 10.1016/0016-7037(82)90184-3 CrossRefGoogle Scholar
  23. Lamontagne MG, Valiela I (1995) Denitrification measured by a direct N2 flux method in sediments of Waquoit Bay, MA. Biogeochemistry 31:63–83. doi: 10.1007/BF00000939 CrossRefGoogle Scholar
  24. Laursen AE, Seitzinger SP (2002) Measurement of denitrification in rivers: an integrated, whole reach approach. Hydrobiologia 485:67–81. doi: 10.1023/A:1021398431995 CrossRefGoogle Scholar
  25. Liikanen A, Flöjt L, Martikainen P (2002) Gas dynamics in eutrophic lake sediments affected by oxygen, nitrate, and sulfate. J Environ Qual 31:338–349Google Scholar
  26. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems (NY, Print) 6:301–312. doi: 10.1007/s10021-003-0161-9 CrossRefGoogle Scholar
  27. McCutchan JH, Lewis WM (2008) Spatial and temporal patterns of denitrification in an effluent-dominated plains river. Verh Int Verein Limnol 30:323–328Google Scholar
  28. McCutchan JH, Lewis WM, Saunders JF (1998) Uncertainty in the estimation of stream metabolism from open-channel oxygen concentrations. J N Am Benthol Soc 17:155–164. doi: 10.2307/1467959 CrossRefGoogle Scholar
  29. McCutchan JH, Saunders JFI, Pribyl AL, Lewis WM (2003) Open-channel estimation of denitrification. Limnol Oceanogr Methods 1:74–81Google Scholar
  30. McMahon PB, Dennehy KF (1999) N2O emissions from a nitrogen-enriched river. Environ Sci Technol 33:21–25. doi: 10.1021/es980645n CrossRefGoogle Scholar
  31. Pfenning KS, McMahon PB (1996) Effect of nitrate, organic carbon and temperature on potential denitrification rates in nitrate-rich riverbed sediments. J Hyrol 187:283–295Google Scholar
  32. Piña-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130. doi: 10.1007/s10533-006-9033-7 CrossRefGoogle Scholar
  33. Pribyl AL, McCutchan JH, Lewis WMJ, Saunders JFI (2005) Whole-system estimation of denitrification in a plains river: a comparison of two methods. Biogeochemistry 73:439–455. doi: 10.1007/s10533-004-0565-4 CrossRefGoogle Scholar
  34. Schaller JL, Royer TV, David MB (2004) Denitrification associated with plants and sediments in an agricultural stream. J N Am Benthol Soc 23:667–676. doi:10.1899/0887-3593(2004)023<0667:DAWPAS>2.0.CO;2CrossRefGoogle Scholar
  35. Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724CrossRefGoogle Scholar
  36. Sjodin AL, Lewis WM, Saunders JF (1997) Denitrification as a component of the nitrogen budget of a large plains river. Biogeochemistry 39:327–342. doi: 10.1023/A:1005884117467 CrossRefGoogle Scholar
  37. Steingruber SM, Friedrich J, Gächter R, Wehrli B (2001) Measurement of denitrification in sediments with the 15N isotope pairing technique. Appl Environ Microbiol 67:3771–3778. doi: 10.1128/AEM.67.9.3771-3778.2001 CrossRefGoogle Scholar
  38. Thomas KL, Lloyd D (1995) Measurement of denitrification in estuarine sediment using membrane inlet mass spectrometry. FEMS Microbiol Ecol 16:103–114. doi: 10.1111/j.1574-6941.1995.tb00274.x CrossRefGoogle Scholar
  39. Tokida T, Miyazaki T, Mizoguchi M (2005) Ebullition of methane from peat with falling atmospheric pressure. Geophys Res Lett 32:L13823. doi: 10.1029/2005GL022949 CrossRefGoogle Scholar
  40. Walter BP, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochem Cycles 14:745–766. doi: 10.1029/1999GB001204 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Tara M. Higgins
    • 1
    • 2
  • James H. McCutchanJr
    • 1
  • William M. LewisJr
    • 1
  1. 1.Center for Limnology, Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  2. 2.Freshwater Ecology Unit, Department of ZoologyNational University of IrelandGalwayIreland

Personalised recommendations